

HYDRAULIC MOTORS

ITALY

HC Single displacement hydraulic motors – High Cavitaton

All partial or total reproduction and copy without written authorization of Italgroup S.r.l. is strictly forbidden. ©2016 ITALGROUP S.R.L. - ALL RIGHTS RESERVED -

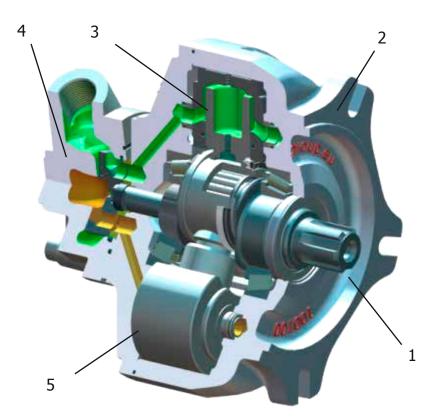
COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

ITALGROUP MOTORS HC SERIES TECHNICAL CATALOGUE GENERAL INDEX

INTRODUCTION - GENERAL INFORMATION	Pag.	3 - 4
HC - ORDERING CODE		5
TECHNICAL DATA - STANDARD & HSM VERSION		6 - 7
HYDRAULIC FLUID RECOMMENDATIONS	"	8 - 9
DRAIN RECOMMENDATIONS	"	10
FLUSHING	"	11
STANDARD SHAFT SEAL FEATURES	"	12 - 13
FORMULAS	"	14
CONVERSIONS		15
MOTOR INSTALLATION AND START-UP		16 - 18
MOTOR HANDLING AND STORAGE		19 - 20
MAINTENANCE OPERATION		21
INSTRUCTION AND ADVICES		22
SPECIAL FEATURES		23
CAVITATION AND FREEWHEELING		23
TROUBLESHOOTING		25 - 26
HC05		
HC1	•	27 - 36
HC2	. "	37 - 47
HC3	. "	49 - 61
	. "	63 - 75

ITALGROUP MOTORS HC SERIES TECHNICAL CATALOGUE GENERAL INDEX

HC5	. Pag.	77- 87
MOTOR DISTRIBUTORS		88 - 89
TACHOMETERS		90 - 93
SPLINED BILLETS	"	94
ADAPTOR FLANGES - SPLINED BARS		95
VALVES		97 - 109
CONTACT US - REACH US		110
		110


INTRODUCTION - GENERAL INFORMATION

Carefully read the use and maintenance manual before start-up the motor. The use and maintenance manual must be placed near to motor installation location in order to guarantee operators easy access to the instruction manual. For further information please contact Italgroup.

Motor description

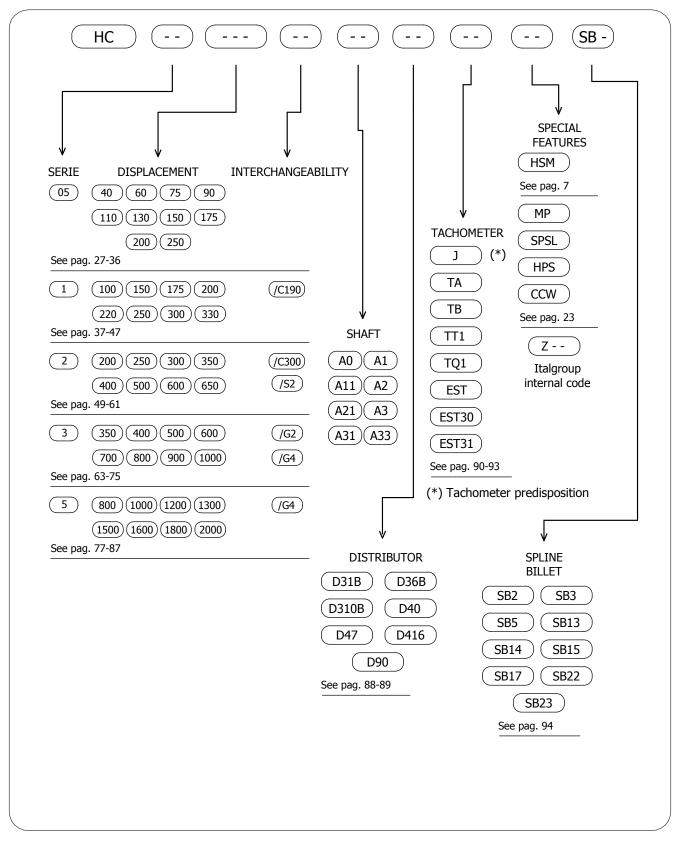
HC series motors are radial piston hydraulic motors (generally indicated as LSHT motors, low speed high torque motors) with a rotating shaft (1) and a stationary housing (2). The pistons (3) are located radially and the working fluid provide the mechanical force that push the pistons against the eccentric shaft, providing the shaft ouput torgue. The inlet and outlet flow to and from the pistons is regulated by a distributor (4), that provides the oil distribution correct timing. The HC motor design is very compact because the piston and the connecting rod are realized in the same piece, to make this realizable an oscillating cylinder is present (5). Acting in the adequate way (increasing or reducing the oil flow coming from the pump) the motor rotational speed can be increased or reduced. The motor design guarantee extremely high starting torgue and high mechanical working efficiency. Respecting the limitation of working parameters (indicated into the technical datasheets) and all recommendations (including fuid recommendations), high motor lifetimes are obtained and very low maintenance requirements are needed.

INTRODUCTION - GENERAL INFORMATION

HC SERIES

Hydraulic motors of the HC series are single displacement crankshaft radial piston motors. Thanks to great variety of accessories HC series can be used in a wide range of applications such as:

- Marine equipments
- Winches
- **Offshore** equipments
- Conveyors
- Injection moulding machines
- Steel bending machines
- Fork lifts trucks
- Skid steer loaders
- **Dumpers**
- Agricultural and forestry machines
- Municipal vehicles
- Airport machinery


Product Features:

- High volumetric and mechanical efficiencies
- Very smooth running at low speeds
- トトト High starting torque / constant torque
- High freewheeling / cavitation resistance
- Wide speed range
- ~ Compact Design
- ~ Low maintenance and high reliability
- ~ **Bi-directional**
- ~ High radial and axial force allowed
- ~ Speed sensor available
- ~ Built-in valves available

The data specified into the catalogue are for product description purpose only and must not be interpreted as warranted characteristics in legal sense. Italgroup S.r.l. reserves the right to implement modifications without notice. All partial or total reproduction and copy without written authorization of Italgroup S.r.l. is strictly forbidden.

HC - ORDERING CODE

HC - MOTOR TECHNICAL DATA

Motor	Size	Displacement	Theoreti- cal torque	Max cont. pressure	Max cont. speed	Peak speed (**)	Max. cont. power (*)	Peak power	Dry wei- ght
		[cc]	[Nm/bar]	[bar]	[rpm]	[rpm]	[kW]	[kW]	[kg]
HC05 40	05	40	0.62	250	1200	1400	16	25	30
HC05 60	05	60	0.97	250	1200	1400	25	35	30
HC05 75	05	74	1.20	250	1200	1400	32	50	30
HC05 90	05	91	1.40	250	1100	1300	32	50	30
HC05 110	05	115	1.84	250	850	1100	35	55	30
HC05 130	05	129	2.05	250	850	1100	35	55	30
HC05 150	05	151	2.40	250	850	1100	35	55	30
HC05 175	05	166	2.65	250	750	1000	35	55	30
HC05 200	05	191	3.04	250	750	1000	35	55	30
HC05 250	05	226	3.60	250	600	800	35	55	30
HC1 100	1	98	1.57	250	1100	1250	40	60	35
HC1 150	1	154	2.45	250	700	1000	40	60	35
HC1 175	1	173	2.74	250	700	1000	45	75	35
HC1 200	1	200	3.20	250	600	900	45	75	35
HC1 220	1	221	3.52	250	600	800	48	75	35
HC1 250	1	243	3.88	250	600	800	50	75	35
HC1 300	1	289	4.61	250	550	700	50	75	35
HC1 330	1	315	5.01	250	450	650	50	75	35
HC2 200	2	193	3.06	250	1200	1500	75	105	53
HC2 250	2	251	4.00	250	950	1150	75	105	53
HC2 300	2	305	4.84	250	800	950	75	105	53
HC2 350	2	348	5.52	250	650	800	75	105	53
HC2 400	2	424	6.76	250	600	800	75	105	53
HC2 500	2	493	7.84	250	520	700	75	105	53
HC2 600	2	566	9.00	250	480	650	75	105	53
HC2 650	2	624	9.92	250	440	620	75	105	53

For all motors:

- Hydrostatic test pressure: see motor datasheets;

- Refer to motor performance diagrams for more information - (*) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

- (**) Do not exceed peak power.

HC - MOTOR TECHNICAL DATA

HYDRAULIC MOTOR	S
ITALY	

								ITAL	
Motor	Size	Displacement	Theoreti- cal torque	Max cont. pressure	Max cont. speed	Peak speed (**)	Max. cont. power (*)	Peak power	Dry wei- ght
		[cc]	[Nm/bar]	[bar]	[rpm]	[rpm]	[kW]	[kW]	[kg]
HC3 350	3	352	5.60	250	640	800	82	130	92
HC3 400	3	426	6.78	250	600	800	85	130	92
HC3 500	3	486	7.73	250	500	700	85	130	92
HC3 600	3	595	9.47	250	450	600	85	130	92
HC3 700	3	689	11	250	420	600	85	130	92
HC3 800	3	792	12.6	250	400	550	85	130	92
HC3 900	3	872	13.9	250	360	525	85	130	92
HC3 1000	3	988	15.7	250	310	500	85	130	92
HC5 800	5	808	12.6	250	350	470	100	150	190
HC5 1000	5	1040	16.2	250	320	470	100	150	190
HC5 1200	5	1190	18.5	250	320	430	100	150	190
HC5 1300	5	1340	20.9	250	320	430	100	150	190
HC5 1500	5	1464	22.8	250	300	380	100	150	190
HC5 1600	5	1635	25.4	250	280	350	100	150	190
HC5 1800	5	1816	28.3	250	280	350	100	150	190
HC5 2000	5	2010	31.3	250	220	180	100	150	190

For superior performances please refer to HCD series catalogue.

For all motors:

Hydrostatic test pressure: see motor datasheets;Refer to motor performance dia-

grams for more information

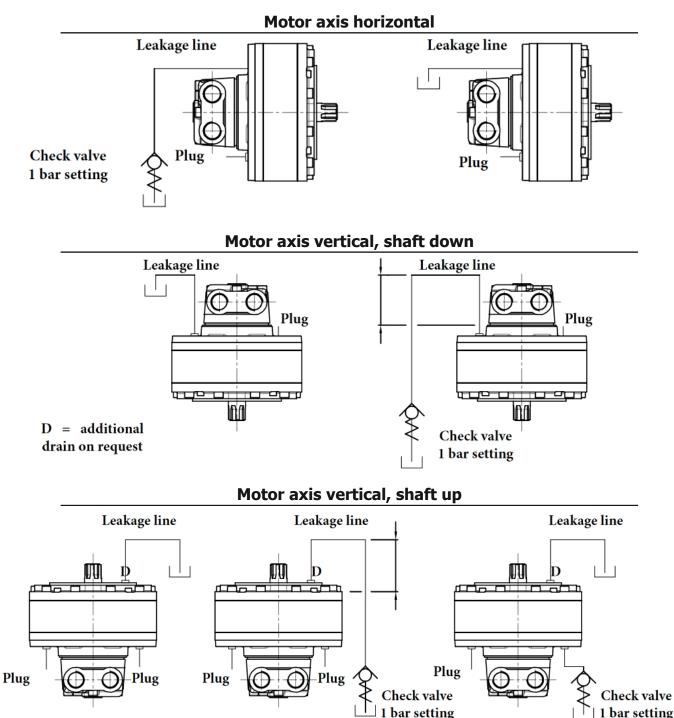
- (*) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

- (**) Do not exceed peak power.

	king temperature is reached, the drain oil vipreferably in the range from 30 to 50 cSt. HE oils (ecological fluids) are allowed, but attention, because them can influence the can reduce motor performances and life. Foils usage.	t must be used with particular motor seals compatibility, and
Optimal viscosity se- lection	Referring the first approximated selection advice the following: Room temperature	to the room temperature, we Oil

Room temperature	OII
-20°C/0°C	BP ENERGOL HLP – HM 22
-15°C/+5°C	BP ENERGOL HLP – HM 32
-8°C/+15°C	BP ENERGOL HLP – HM 46
0°C/+22°C	BP ENERGOL HLP – HM 68
+8°C/+30°C	BP ENERGOL HLP – HM 100
-20°C/+5°C	BP BARTRAN HV 32
-15°C/+22°C	BP BARTRAN HV 46
0°C/+30°C	BP BARTRAN HV 68

ATF (automatic transmission fluid) oils, SAE 10-20-30 W oils, multigrade motor oils (SAE 15 W 40, 10 W 40), universal oils, can also be used. Always fill the motor (please refer to the "DRAIN RECOMMENDATIONS" section) with the selected hydraulic fluid before motor start-up. During cold start-up avoid high-speed operation until the system reach the working temperature, in order to provide an adequate lubrication. Every 5-8 °C of increase respect to the optimal working temperature for the selected oil, the hydraulic fluid life decrease of about 40-50% (refer to "OXIDATION" section). Consequently, the motor lifetime will be affected by the working temperature increase respect to the optimal working temperature of the selected oil. The maximum continuous working temperature is 70 °C, the temperature must be measured from motor drain line. If the motor doesn't have a drain line, the temperature must be evaluated at the return line port.

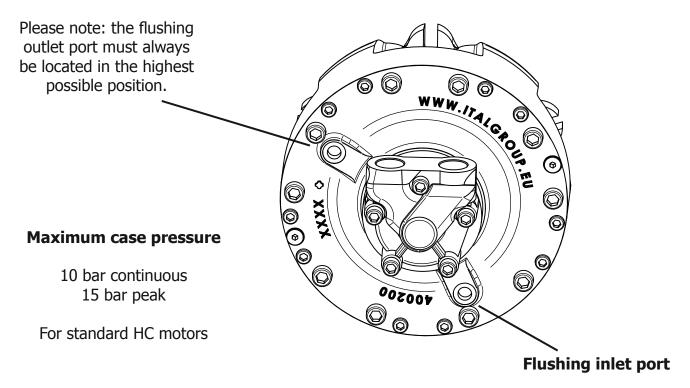

Fire resistant oil limita- tions		Max cont. Pressure [bar]	Max int. Pressure [bar]	Max Speed [rpm]
	HFA, 5-95% oil-water	103	138	50%
	HFB, 60-40% oil-water	138	172	100%
	HFC, water-glycol	103	138	50%
	HFD, ester phosphate	250	293	100%

HYDRAULIC FLUID RECOMMENDATIONS

Filtration	 Hydraulic systems oil must always be filtered. The choice of filtration grade derives from needs of service life and money spent. In order to obtain stated service life it is important to follow our recommendations concerning filtration grade. When choosing the filter it is important to consider the amount of dirt particles that filter can absorb and still operate satisfactorily. For that reason we recommend filters showing when you need to substitute filtering cartridge. 25 µm filtration required in most applications 10 µm filtration in closed circuit applications
Oxidation	Hydraulic oil oxidizes with time of use and temperature. Oxidation causes changes in colour and smell, acidity increase or sludge formation in the tank. Oxidation rate increases rapidly at surface temperatures above 60°C, in the- se situations oil should be checked more often. The oxidation process increases the acidity of the fluid; the acidity is stated in terms of the "neutralization number". Oxidation is usually slow at the be- ginning and then it increases rapidly. A sharp increase (by a factor of 2 to 3) in neutralization number between inspections shows that oil has oxidized too much and should be replaced immediately.
Water content	Oil contamination by water can be detected by sampling from the bottom of the tank. Most hydraulic oils repel the water, which then collects at the bot- tom of the tank. This water must be drained off at regular intervals. Certain types of transmission oils and engine oils emulsify the water; this can be detected by coatings on filter cartridges or a change in the colour of the oil. In such cases, obtain your oil supplier advice.
Degree of contami- nation	Heavy contamination of the oil causes wear rising in hydraulic system components. Contamination causes must be immediately investigated and remedied.
Analysis	It is recommended oil being analyzed every 6 months. The analysis should cover viscosity, oxidation, water content, additives and contamination. Most oil suppliers are equipped to analyze oil state and to recommend appropria- te action. Oil must be immediately replaced if the analysis shows that it is exhausted.

Leakage line connection

Always fill the motor with hydraulic fluid before start-up. Arrange piping in a way that the motor cannot drain off and cannot generates air bubbles into the motor case. Under certain conditions may be is necessary to arrange a check valve in order to help avoiding the motor drain off. Always check carefully that the leakage line pressure doesn't overcome 10 bar pressure: therefore leakage lines must be shorter as possible and with a minimum flow resistance.


The data specified into the catalogue are for product description purpose only and must not be interpreted as warranted characteristics in legal sense. Italgroup S.r.l. reserves the right to implement modifications without notice. All partial or total reproduction and copy without written authorization of Italgroup S.r.l. is strictly forbidden.

FLUSHING	HYDRAULIC MOTORS
Motor	Flushing flow [l/min]
HC05 40-60-75-90-110-130 HC1 100	5
HC05 150-175-200-250 HC1 150-175-200-220-250-300-330 HC2 200-250-300	6
HC2 350-400-500-600-630 HC3 350-400-500-600	8
HC3 700-800-900-1000 HC5 800-1000-1200-1300-1500	10
HC5 1600-1800-2000	15

Important note: the above value are approximated. The correct way to operate is the following: the flushing flow is adequate if during the motor operation the drain oil viscosity be at least 20 cSt, preferably in the range from 30 to 50 cSt.

Maximum continuous case pressure 10 bar (15 bar peak pressure). Special seals for 20 bar continuous case pressure (25 bar peak pressure) are available upon request (refer to page 23, ordering code: HPS).

Flushing outlet port

The data specified into the catalogue are for product description purpose only and must not be interpreted as warranted characteristics in legal sense. Italgroup S.r.l. reserves the right to implement modifications without notice. All partial or total reproduction and copy without written authorization of Italgroup S.r.l. is strictly forbidden.

STANDARD SHAFT SEAL FEATURES

Features	Type: BABSL Form: AS DIN 3760 Material: SIMRIT® 72 NBR 902 SIMRIT® 75 FKM 595
Material	SIMMERRING® radial shaft seal with rubber covered O.D., short, flexibility suspensed, spring loaded sealing lip and additional dust lip: see Part B/SIMMERRING®, sections 1.1 and 2.
Application	Sealing lip and O.D.: - Acrylonitrile-butadiene rubber with 72 Shore A hardness (designation: SIMRIT® 72 NBR 902) - Fluoro rubber with 75 Shore A hardness (designation: SIMRIT®75 FKM 595) Metal insert: - Plain steel DIN 1624 Spring: - Spring steel DIN 17223
Operating conditions	See Part B/ SIMMERRING®, sections 2. 4. Media: mineral oils, synthetic oils Temperature: -40°C to +100°C (SIMRIT® 72 NBR 902) -40°C to +160°C (SIMRIT® 75 FKM 595) Surface speed: up to 5 m/s Working pressure: see diagram on next page, pressure is function of surface speed (i.e. of rotating speed and shaft diameter)

STANDARD SHAFT SEAL FEATURES

Housing and machining See Part B/ SIMMERRING®, sections 2. criteria Shaft: Tolerance: ISO h11 Concentricity: IT 8 Roughness: Ra=0.2-0.8 µm Rz=1-4 µm Rmax=6 µm Hardness: 45-60 HRc Roughness: non oriented; preferably by plunge grinding Housing: Tolerance: ISO H8 Roughness: Rmax<25 µm

Pressure diagram

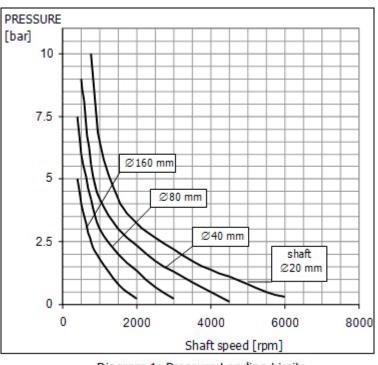


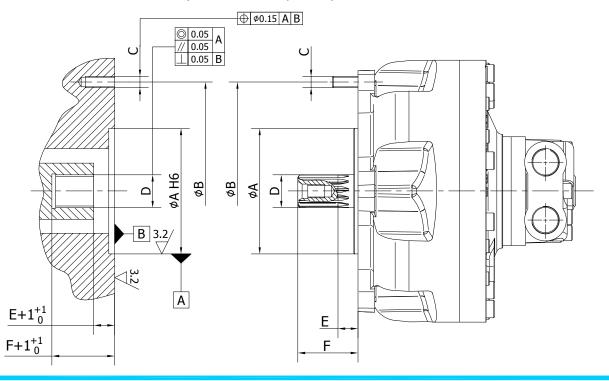
Diagram 1: Pressure Loading Limits

Special seals for 20 bar continuous case pressure are available upon request (ordering code: HPS). Refer to page 23 for more information.

FORMULAS

	ITALY								
		LEGEND			FORMULA				
	Т	Torque	e [Nm]		$T = T_s * P_r = (V * P_r) / 62.8$				
	T _s	Specific torque [Nm/bar]			$P_{1} = (T * S) / 9549$				
	P ₁	Power [kW]			$P_2 = (T * S) / 7023$				
	P ₂	Powe	r [CV]			S = (F * 1			
	Ś	Speed	[rpm]			V = (T * 6			
	V	Displaceme	- · -	evl		F = (V * S		1	
	F	-	l/min]	- 1		. (,,	-	
	P,	-	re [bar]						
LENGHT	1 m	= 39,3701 in	MASS	1 kg	= 2,2046 lb	POWER	1 kW	= 1,341 HP	
		= 3,2808 ft						= 1,3596 CV	
		= 1,0936 yd	FORCE	1 N	= 0,102 kgf		1 HP	= 0,7457 kW	
		= 1000 mm			= 0,2248 lbf			= 1,0139 CV	
	1 in	= 0,0833 ft		1 kgf	= 2,205 lbf			-	
		= 25,4 mm			= 9,806 N	VOLUME	1 m ³	= 1000 l	
	1 ft	= 0,3048 m		1 lbf	= 0,4536 kgf		11	$= 61,023 \text{ in}^3$	
		= 0,3333 yd			= 4,448 N			= 0,264 galUS	
		= 12 in					1 in^3	= 0,01639 l	
	1 yd	= 0,9144 m	PRESSU	JRE 1 bar	= 14,223 psi			$= 16,39 \text{ cm}^3$	
		= 3 ft			= 0,99 atm			= 0,004326 galUS	
		= 36 in			= 1,02 ata]	l galUS	= 3,78791	
	1 km				= 100000 Pa			=231,15 in ³	
		= 1093,6 yd			= 100 kPa			_	
		= 0,6214 mile			= 0,1 MPa	TORQUE	1 Nm	= 0,102 kgm	
	1 mile	= 1,609 km		1 psi	= 0,0703 bar			= 0,7376 lbf ft	
		= 1760 yd					1 kgm	= 9,806 Nm	
			FLOW	1 l/min	= 0,264 gpm			= 7,2325 lbf ft	
SPEED	1 m/s	= 3,6 km/h		-	= 1000 cc/Rev		1 lbf ft	= 0,1383 kgm	
		= 2,237 mph		1 gpm	= 3,785 l/min			= 1,3558 Nm	
	11 1	= 3,2808 ft/s		1 2/	= 3785 cc/min				
	1 km/h	= 0,2778 m/s		1 m ³ /s	= 60000 l/min				
		= 0,6214 mph			= 15852 gpm				
		= 0,9113 ft/s							
	1 mph	= 1,609 km/h							
		= 0,447 m/s							
		= 1,467 ft/s							
	1 ft/s	= 0,3048 m/s							
		= 1,0973 km/h							
		= 0,6818 mph							
		. 1							

MOTOR INSTALLATION AND START-UP


Motor installation and start-up

The motor, after testing, it's packed in different ways that depends by customer and/or logistic requirements. The motor must be carefully moved from his box or pallet, with the assistance of correctly sized movimentation tools, like eyebolts (all the motors has a thread hole in the shaft end, please refer to the HC general catalogue, shafts section) or lifting slings.

When the motor is moved from one place to another always be very careful and act in a way that the motor is stable and under control during movimentation (refer to handling and storage section for more details).

Before mount the motor, check carefully the absence of damage happened for example during transportation and/or storing.

For mounting dimensions please refer to the HC installation drawings. The motor must be installed using the correct screws size (we recommends the use of 10.9 and 12.9 class resistance fixing screws) and must be placed on a structure that is capable to correctly support the motor during functioning: for this reason the structure must not only be able to support the motor weight but must also assure the absence of vibration during operation and must win the reaction forces that are generated by the working torque. Regarding the motor fitting design, the concentricity between the centering diameter (spigot) and shaft (both splined or parallel) must be assured with a strict tolerance (please refer to the following general indication). If the concentricity between the shaft and the centering diameter and/or fixing holes is not respected, in the worst case the motor can have an unusual failure or can work only with low performances. Splined adaptors (splined billets) are available upon request.

MOTOR INSTALLATION AND START-UP

Hoses and piping must be clean and free from contamination. Use proper hoses for oil connection, both for inlet and outlet main ports, and for drain line. Refer to hoses and fitting constructors in order to correctly size and select hoses and fittings. In order to keep control on the oil compressibility keep hoses to the minimum recommended size and select pipelines most rigid as possible.

The motor can be mounted in any position (refer also to drain recommendations section). In run-away conditions you must use counterbalance valves. When the motor is installed vertically with shaft pointing upwards, consult our technical department. If the motor is connected to high inertial loads, the hydraulic system must be designed to prevent peaks of pressure and cavitation.

Consider the use of relief valves, possibly directly mounted on motor distributor in case the application can generates pressure peaks at the motor ports: the relief valve should be able to discharge all the flow (or at least a good part of it) with a limited pressure increase. Italgroup can provide differents valve types that can be placed directly on the motor distributor (please refer to Italgroup valves technical catalogue section).

Motor case and pistons must be completely filled with oil before starting. Do not load motor to maximum working pressure instantly. During cold start-up avoid high-speed operation until the system reach the working temperature. Connect the case drain directly to tank, and avoid excessive drain line pressure losses (the case drain pressure must not exceed 10 bar continuous pressure for HC serie standard motors). The case drain port on the motor must be located on the highest point of the installation to ensure that the motor will always be full of oil. (See drain recommendations page for more details)

Maximum oil temperature must not exceed 70°C. Heath exchangers must be used with higher temperatures. The operating fluid viscosity must always be higher than a certain minimum value (see "fluid recommendation" section) in order to guarantee an optimal motor internal lubrication. When the working conditions cause the motor case overheating above a critical value, the motor flushing is required. Flushing consists in the introduction of fresh oil (taken from the hydraulic circuit) into the motor case. Oil must be taken from the return line to avoid internal motor damage (the continuous motor case pressure must be maximum 6 bar). Flushing is an important operation that can be very effective to improve motor lifetime with heavy duty working conditions and improve the motor mechanical efficiency. The motor flushing, if the motor works in one direction only, can be easily performed connecting the motor return line to the lowest motor drain port. The highest motor drain port must be connected to the tank. For D90 flow distributors, the side 1/4" metallic plugs can be used for flushing circuit installation: infact the plug (corresponding to the return line port) be removed and the connection between motor low pressure port and motor case can be correctly realized.

If the motor axis is not horizontal and/or the motor works in bidirectional operation, please contact Italgroup technical department, that can assist you to advice how to perform the desired operation in the best way. Just for your reference, Italgroup can provide you flushing valves in order to perform an effective flushing circuit.

Minimum speed is very low and can reach values near to 0.5-1 rpm (depending on motor displacement). In case of low speed vibration a reasonable back pressure can eliminate or minimize the vibration and noise level (a general guideline value can be defined by 5-8 bar back pressure). For more information please contact our technical department.

HC series motors can works in an effcient way with high back pressures (back pressure occurs for example when hydraulic motors are installed in series circuit). A general guideline for back pressure can be set limitating the inlet and outlet pressure sum to 400 bar. High back pressure values are often responsible of motor overheating, so if drain temperature reach values that bring the oil viscosity under the recommended limit (refer to fluid recommendations section), perform appropriate motor flushing and/or reduce the back pressure.

During start-up and in the period immediately after it, any hydraulic installation must be regurarly and carefully checked at frequent intervals. The working pressure must be checked in order to understand that it agrees with the design values. The drain line pressure for standard motors must not overcome 6 bar continuous. If leakage occurs, check the reason, correct it and carry out new measurements. Check all lines, connections, screws, etc, and tighten if necessary. Replace contaminated fluid immediately.

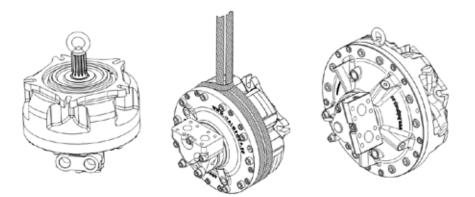
The motor installation and start-up must be performed by instructed and experienced personnel only.

Please contact us freely to obtain further information.

Motor handling

The motor must be correctly packed during transport and correctly stored into the warehouse in order to avoid eventual damages that can make the motor functioning not adequate.

During handling operations, make sure that the motor shaft and tachometer shaft (if present) don't receive any hit, in order to avoid motor damage.

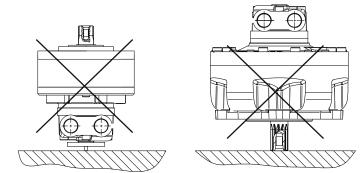

During all operations of lifting and handling, never movimentate motors by hand but use adequate tools. In order to avoid that motor can falls, creating danger for authorized working persons in the nearings, use one of following methods:

- use lifting slings of adequate capacity;

- use adequate eyebolt using the thread hole in the shaft end;

- HC2, HC3 and HC5 can be lifted and handled using an eyebolt located on the motor external diameter.

Refer to the following pictures.



MOTOR HANDLING AND STORAGE

Motor storing

Storing must be carefully made using adequate storing tools (for example boxes, pallets, etc...) that can guarantee that the motor is stable and cannot move without control, in order to avoid damage problems. Make sure that the weight of the motor doesn't be substained by the motor shaft or by the tachometer shaft (if present).

HC series motors are supplied together with plastic plugs, that keep the hydraulic oil (that was used during final test in Italgroup testing workbench) inside the motor. A thin oil film is present on the internal motor parts, whereas the external parts are covered with antirust oil that prevents damage from oxidation and corrosion.

Therefore the motors can be safely stored into the customer warehouse without performance losses for long periods (up to 4-6 months). The storing location must has some important characteristics:

- room temperature comprised between -15°C and +55°C without fast and/or excessives temperature excursions;

- low relative humidity;

- absence of aggressive and corrosive medias in the motor nearings.

In particular, if motor should be motionless for more than 4-6 months, it must be protected against internal rust. Proceed as follows:

- fill the motor case with hydraulic oil. After that the motor case is full of oil, close it with a screw plug;

- fill the motor also from inlet or outlet port. Turn the shaft by hand (the shaft must make about one revolution) and finally close the inlet and outlet ports.

Please note that the plastic plugs are necessary not only to keep the hydraulic oil inside the motor, but even to avoid that dirt and other fluids (like water for example) can enter into the motor and create damage during storing or during motor start-up. Therefore make sure all drain ports, supply ports and discharge ports are closed during motor handling and storing. If plugs are missing, use plastic plugs or adequate systems in order to guarantee that the motor is well protected by dirt and other fluids.

The data specified into the catalogue are for product description purpose only and must not be interpreted as warranted characteristics in legal sense. Italgroup S.r.l. reserves the right to implement modifications without notice. All partial or total reproduction and copy without written authorization of Italgroup S.r.l. is strictly forbidden.

MAINTENANCE OPERATIONS

Maintenance operations	All the assembly and maintenance works must be performed when the mo- tor is stopped and not connected to any power source, in order to avoid an accidental start-up. In addition the pressure inside the motor must be set to zero (the motor must be depressurized) before to perform maintenance operations. The motor maintenance must be performed by instructed and experienced personnel only, following carefully Italgroup advices and procedures. HC series motors are internally lubricated by the operating fluid, if the mo- tors are used according to the technical data reported into the HC catalo- gue, they need very limited maintenance operations. In order to achieve good performances, long bearings lifetime and safe working, the working fluid must be carefully selected in function of the operating parameters (a fundamental parameter is the ambient temperature range). In case of fire resistence fluid usage , some limitation on pressure and speed can be re- quired. Refer to hydraulic fluid recommendations section for more informa- tion. If required please contact Italgroup technical department for further information.					
	Motor parts	Material				
	Motor shaft, cylinders, rollers, pins, screws, distributor bush, ro- tating distributor, distributor joint, pistons, ring for rod.	Steel				
	Motor case, motor flange, distri- butor body Cast iron					
	Distributor disk	Bronze				
	Slippers Charged PTFE, PTFE					
	O-Rings	Elastomer				

Radial shaft seal rings

The data specified into the catalogue are for product description purpose only and must not be interpreted as warranted characteristics in legal sense. Italgroup S.r.l. reserves the right to implement modifications without notice. All partial or total reproduction and copy without written authorization of Italgroup S.r.l. is strictly forbidden.

Elastomer

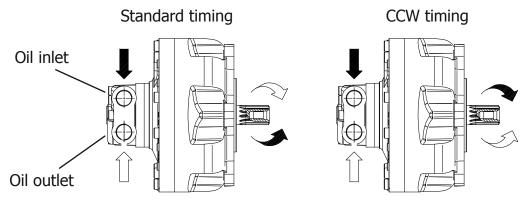
TIALI						
Bearings	The bearing life depends by different factors, like bearing type, motor spe- ed, working pressure, external loads, duty cycle, fluid viscosity, oil cleanli- ness, type and temperature.					
	Lifetime is measured by L_{10} which is called "theoretic lifetime". It represents the number of cycles that 90% of identical bearings can effort at the same load without showing wear and tear.					
	Please refer to bearing lifetime diagrams reported in the following pages to obtain the theoretical bearing lifetime. The lifetimes diagrams shown the $L_{50'}$ median or average lifetime, that can be considered as 5 times L_{10} .					
	Please note that the theoretical lifetime can be different from the real lifetime, especially in case of heavy duty applications with continuous work cycle. Please contact Italgroup S.r.l. for more informa- tion.					
Motor creep speed	The hydraulic motor is able to hold the load acting as a brake (if proper valves or circuit are considered and installed), but a certain creep speed is always present: this is typical of all brands hydraulic motors.					
	The motor creep speed depends by many factors, like operating conditions (motor displacement and type, pressure load on the shaft, oil viscosity, type and temperature) and are represented in the creep speed diagrams (see performance diagrams for each motor size). The creep speed diagrams are shown for an hydraulic oil at reference conditions of 40 cSt.					
	If creep speed is higher than desired value a negative brake can be considered: Italgroup can supply negative brakes that can be fitted to the hydraulic motor. Please contact Italgroup S.r.l. for more information.					

Special features

Marine painting

If needed, special painting or primers are available in order to guarantee optimal protection against normal corrosion and marine environment corrosion. The ordering code is MP. Please contact Italgroup S.r.l. for more information.

Speedy-sleeve

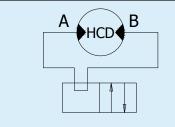

A special inox sleeve is available upon request. In case the motor is used in aggressive medias or environments, this can be very useful in order to protect the motor shaft surface located in proximity of the motor shaft seal. This improves the shaft and seal endurance respect to wear and corrosion. The ordering code is SPSL. Please contact Italgroup S.r.I. for more information.

High pressure shaft seal

Standard HC motors are supplied with high pressure shaft seals, the continuous drain pressure must be maximum 10 bar, whereas the peak drain pressure must be maximum 15 bar. In case the drain line can or must has a higher pressure, special shaft seals are available upon request. The ordering code is HPS. The drain pressure with HPS shaft seal can reach 20 bar continuous pressure and 25 bar peak pressure. The HPS shaft seal is bi-directional also, so it can be used for example in underwater applications. Please contact Italgroup S.r.l. for more information.

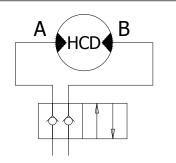
Counterclockwise rotation

Standard HC motors are supplied with clockwise distributor timing. Please refer to the installation drawings of each section for more information. With ordering code CCW the motor is supplied with counterclockwise rotation timing. Contact Italgroup for more information.


Cavitation and freewheeling

In hydraulic special applications like for example drilling machines, mobile applications, cavitation may be present. Infact when the motor is forced to run at a certain speed that requires an oil flow that is not disposable from the pump, in a transitory or continuous situation, the oil pressure inside the motor pistons decrease and can cause many problems like tractive forces on connecting rods retaining rings, metallic erosion (due to the air/ vapour bubbles that develop when the piston pressure is very low and explodes when pressure rise above the equilibrium vapour pressure) and overheating.

It's always better to avoid motor cavitation or at least reduce it during operation (installing for example proper valves and using well designed circuits) but when this event cannot be avoided HC series motors are a very good solution in order to guarantee the correct motor operation in a safe and efficient way. It's always good to take into consideration circuit modifications in order to avoid cavitation, mainly because the other components that are present in the circuit can be more sensible to the problem than the HC motor, therefore the HC can have an efficiency loss not due to the motor characteristics but to a bad cavitation resistance of the other ciruit components.


Pressurization circuit Please notice that using an auxiliary pump or a proper designed oil accumulator, in many cases (through the low pressure pipe pressurization) cavitation can be avoided or in all cases much reduced.

Low speed freewheeling circuit When the freewheeling requested speed is not high, the circuit shown on the left can be used. The speed for example can be controlled through a variable throttle valve. The main problem is that especially when throttle is acting, oil temperature can reach critical values.

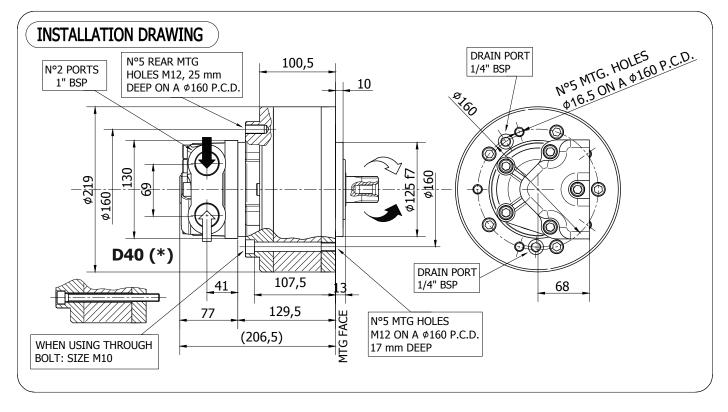
High speed freewheeling circuit Realizing the freewheeling in this particular way the motor operates without oil into the pistons, so the energy consumption is always the same and independent by the motor speed. In addition this energy loss is very low. This is the most suitable circuit for high speed freewheeling operation.

TROUBLESHOOTING

Problem	Possible cause	Solution					
Excessive noises	Cavitation	Adopt an anti-cavitation sy- stem					
	Mechanical vibrations	Check and fix damaged components					
	Irregular pressure or flow	Check other components (pump, valves, accumulators) and check drain flow					
	Air bubbles in the circuit	Bleed circuit					
	Overflow	Check max allowed flow					
	Overpressure	Check relief valve pressure setting					
Unit overheating	Oil viscosity too low	Choose the appropriate oil according to the temperature					
	Undersized cooling system	Improve cooling system					
	Working without oil in the case	Overhaul the unit, fill with oil before start-up					
	Worn motor internal components	Overhaul the motor					
Anomalous drainage flow	Motor internal seals worn	Overhaul the motor					
Anomalous drainage now	Excessive pressure in the mo- tor case	Check drain port size, pres- sure and flow, check piping connections					
	Pressure relief valve set incorrectly	Check relief valve pressure setting					
Insufficient torque	Undersized motor displace- ment	Replace with bigger displ. motor					
	Pump not able to reach the design pressure	Check pump integrity					
	Oversized motor displacement	Replace with smaller displ. motor					
Insufficient speed	Pump not able to reach the design flow	Check pump integrity					
	Undersized pump	Improve pump output flow					
	Excessive drain flow	Overhaul the motor					
	Seized motor flow distributor	Overhaul the flow distributor					
	Motor internal seizure	Overhaul the motor					
Output shaft cannot rotate	Motor internal seals worn	Check drain flow, overhaul the motor					
	Air in the circuit	Bleed the circuit					

TROUBLESHOOTING

Problem	Possible cause	Solution			
	Worn seals	Replace seals			
Oil leakage	Excessive pressure in the mo- tor case	Check drain port size, pressure and flow, check piping con- nections			
	Burst motor shaft seal	Check drain port size, pressure and flow, check piping con- nections			
Incorrecte sense of rotation	Pipes incorrectly connected	Check pipe connections			
	Incorrect rotating distributor timing	Change rotating distributor timing			



ITALGROUP SRL HC SERIES - HC05 GENERAL CATALOGUE INDEX - HC05

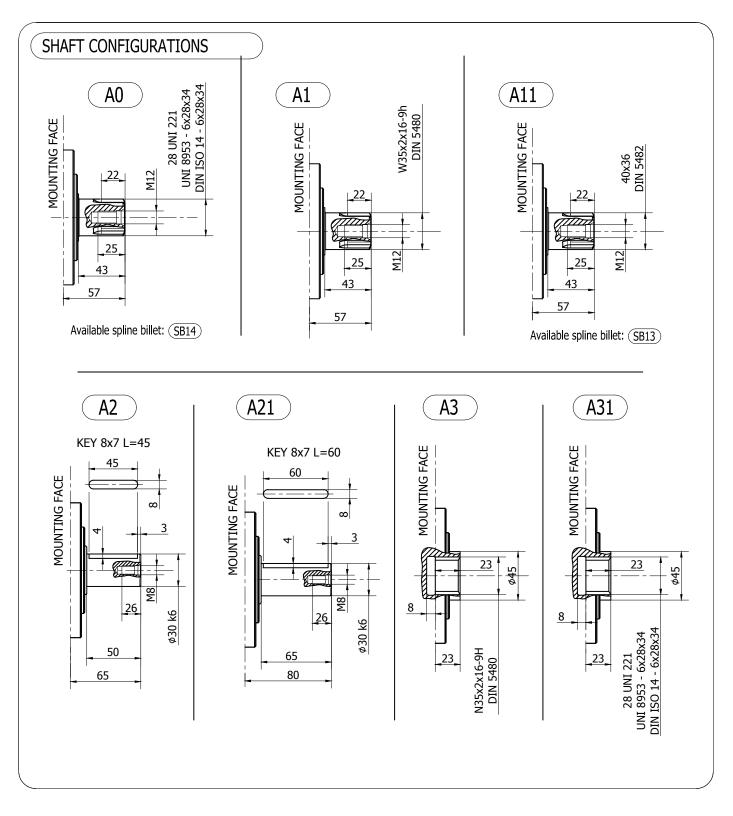
HC05 - INSTALLATION DRAWING	Pag	28 - 29
HC05 - PERFORMANCE DIAGRAMS	w	30 - 35
ORDERING CODE	w	36

HC05

TECHNICAL DATA

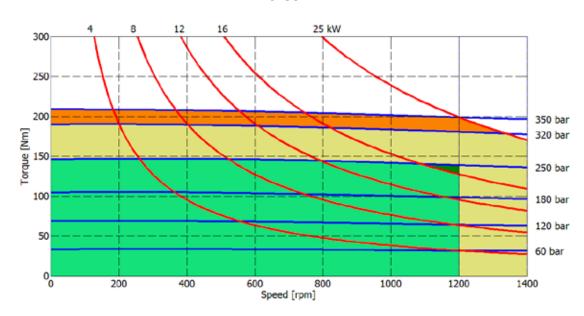
		40	60	75	90	110	130	150	175	200	250
DISPLACEMENT	[cc]	40	60	74	91	115	129	151	166	191	226
SPECIFIC TORQUE	[Nm/bar]	0,62	0,97	1,20	1,40	1,84	2,05	2,40	2,65	3,04	3,60
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	1200	1200	1200	1100	850	850	850	750	750	600
PEAK SPEED (***)	[rpm]	1400	1400	1400	1300	1100	1100	1100	1000	1000	800
MAX. CONT. POWER (****)	[kW]	16	25	32	32	35	35	35	35	35	35
PEAK POWER	[kW]	25	35	50	50	55	55	55	55	55	55
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	30	30	30	30	30	30	30	30	30	30
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

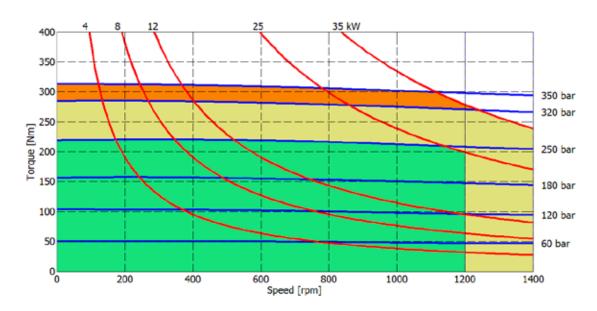
- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

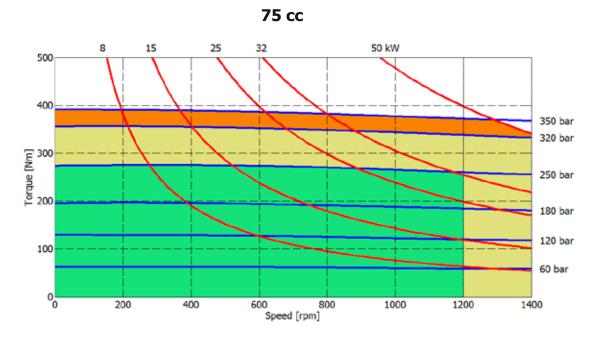
- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.



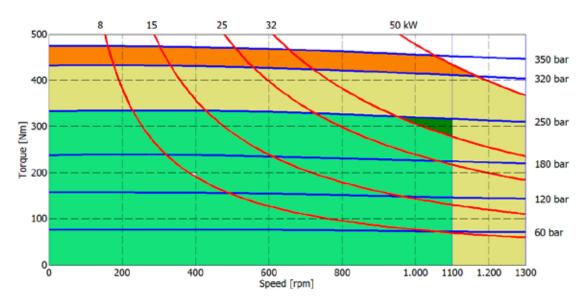


40 cc

Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

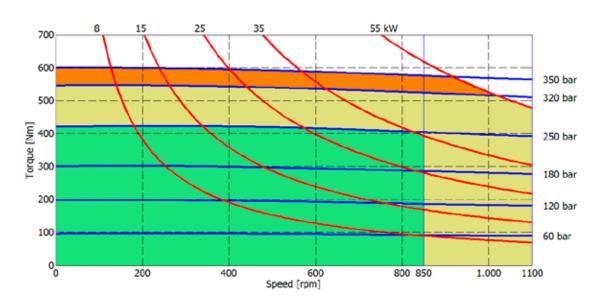
duty cycle, for 3 minutes maximum period Peak operation: permitted for very short


periods (3-5 seconds every 10-15 minutes)

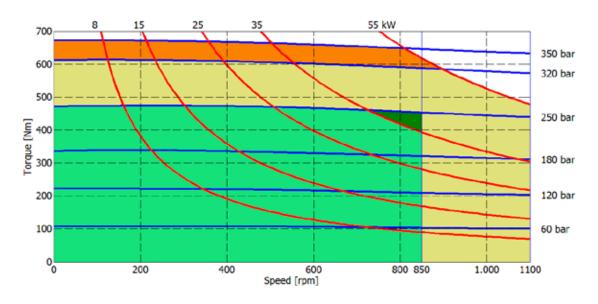
The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

90 cc

Continuous operation

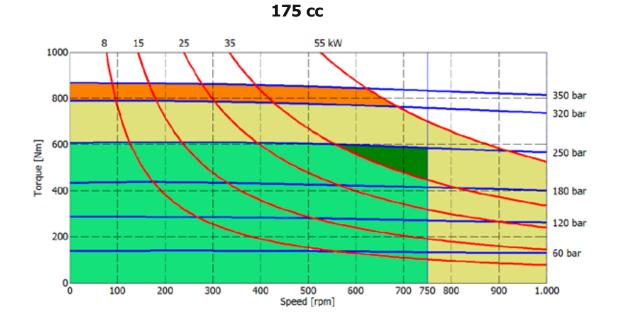

Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of duty cycle, for 3 minutes maximum period

Peak operation: permitted for very short periods (3-5 seconds every 10-15 minutes)


The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

110 cc

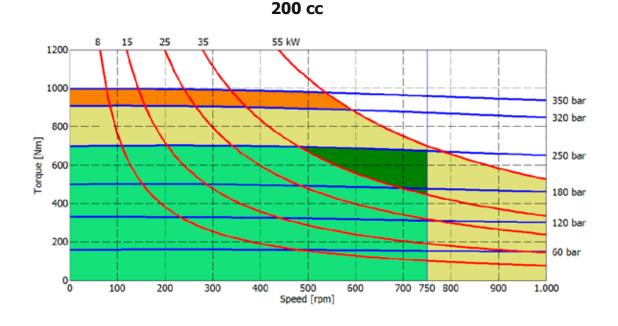
130 сс


Continuous operation

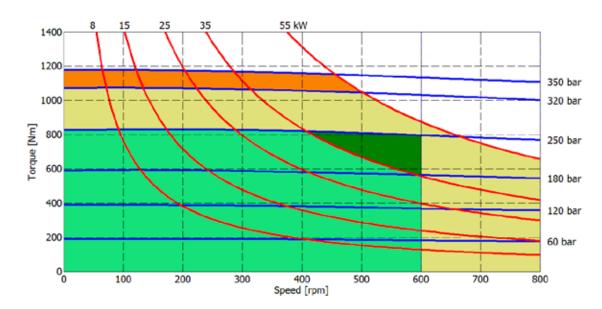
Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of duty cycle, for 3 minutes maximum period

Peak operation: permitted for very short periods (3-5 seconds every 10-15 minutes) The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

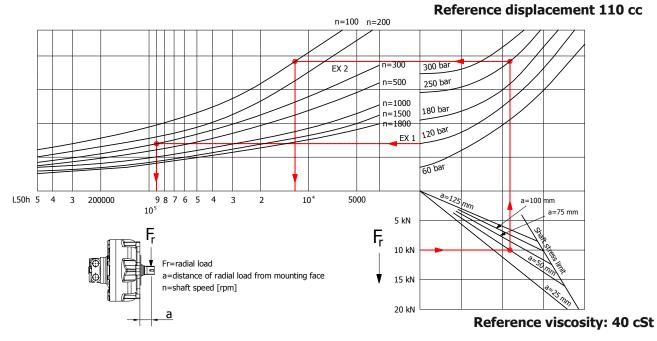

periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

Continuous operation

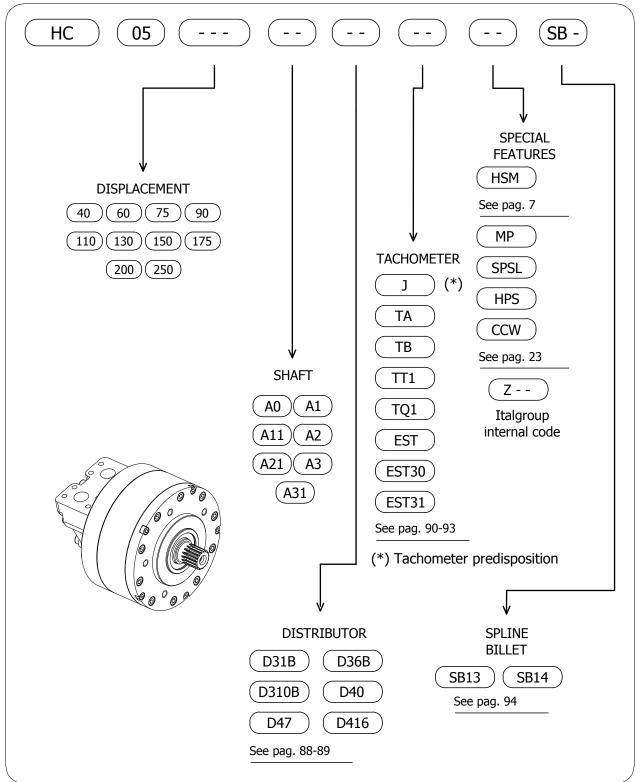
Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

duty cycle, for 3 minutes maximum period Peak operation: permitted for very short


periods (3-5 seconds every 10-15 minutes)

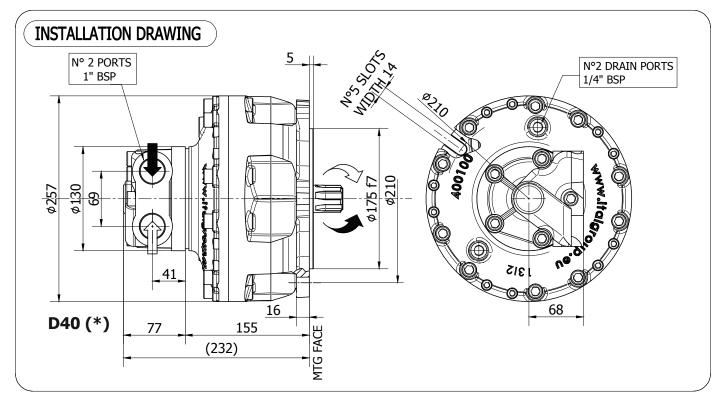
The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

BEARING LIFE


HC05- ORDERING CODE

Example:

We suppose (EX1): p=120 [bar], n=300 [rpm]; we obtain an average lifetime of 90000 [h]. If we suppose (EX2): $F_r=10$ [kN], a=50 [mm], n=100 [rpm] and p=250 [bar] we obtain an average lifetime of 11000 [h].



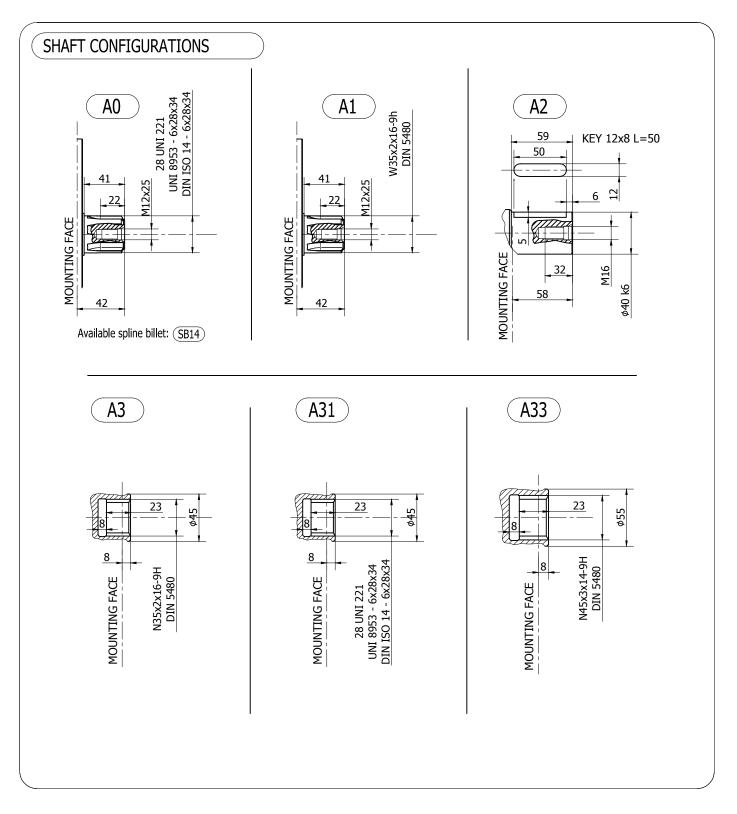
ITALGROUP SRL HC SERIES - HC1 GENERAL CATALOGUE INDEX - HC1

HC1 - INSTALLATION DRAWING	Pag	38 - 39
HC1/C190 - INSTALLATION DRAWING	w	40 - 41
HC1 - PERFORMANCE DIAGRAMS	"	42 - 46
ORDERING CODE	w	47

HC1

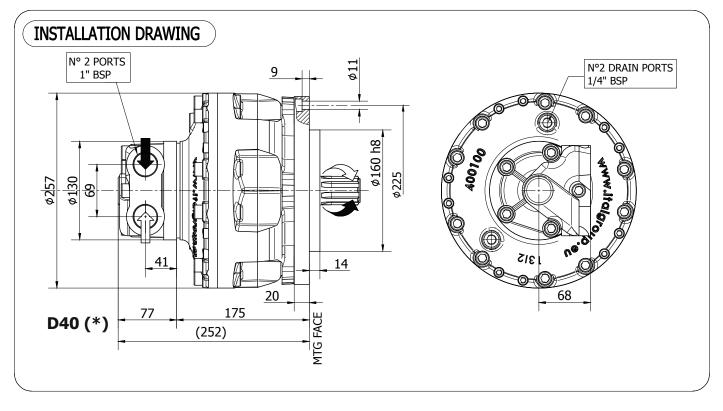
TECHNICAL DATA

		100	150	175	200	220	250	300	350
DISPLACEMENT	[cc]	98	154	173	200	221	243	289	315
SPECIFIC TORQUE	[Nm/bar]	1,57	2,45	2,74	3,20	3,52	3,88	4,61	5,01
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	1100	700	700	600	600	600	550	450
PEAK SPEED (***)	[rpm]	1250	1000	1000	900	800	800	700	650
MAX. CONT. POWER (****)	[kW]	40	40	45	45	48	50	50	50
MAX. CONT. POWER WITH FLUSHING	[kW]	60	60	75	75	75	75	75	75
MAX. CASE PRESSURE	[bar]	10	10	10	10	10	10	10	10
DRY WEIGHT	[kg]	35	35	35	35	35	35	35	35
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70


- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.

- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

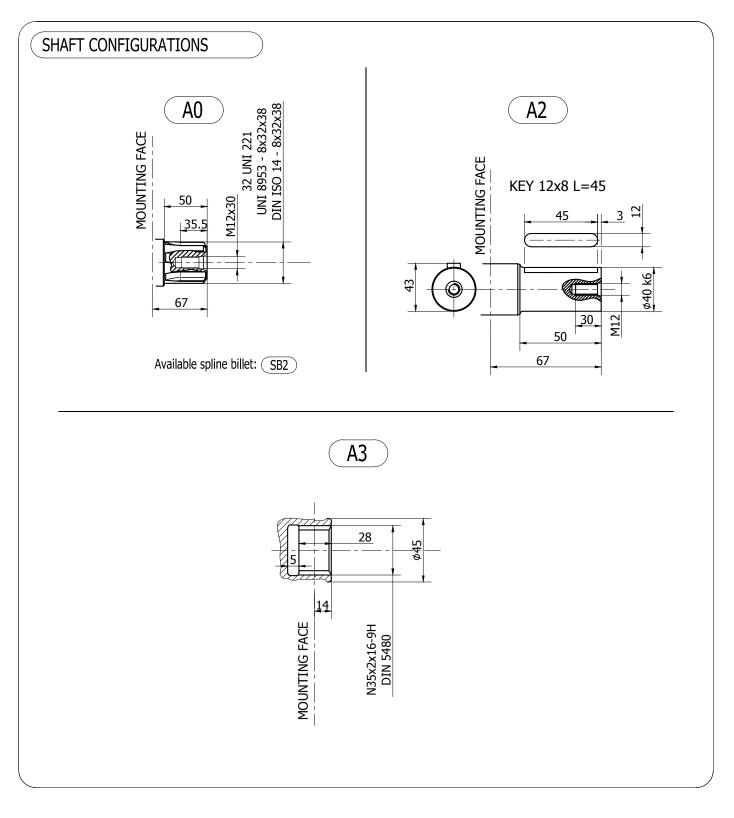
- (***) Do not exceed maximum continuous power with flushing (pag. 11).


- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

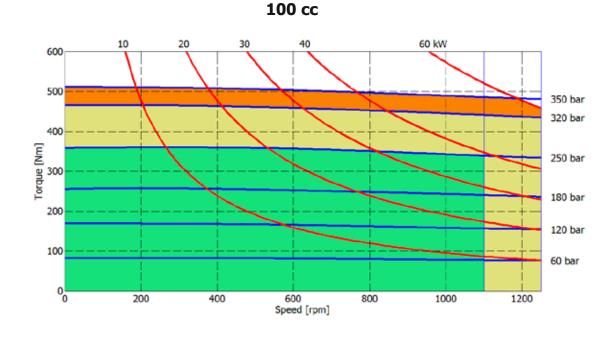
TECHNICAL DATA

		100	150	175	200	220	250	300	350
DISPLACEMENT	[cc]	98	154	173	200	221	243	289	315
SPECIFIC TORQUE	[Nm/bar]	1,57	2,45	2,74	3,20	3,52	3,88	4,61	5,01
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	1100	700	700	600	600	600	550	450
PEAK SPEED (***)	[rpm]	1250	1000	1000	900	800	800	700	650
MAX. CONT. POWER (****)	[kW]	40	40	45	45	48	50	50	50
MAX. CONT. POWER WITH FLUSHING	[kW]	60	60	75	75	75	75	75	75
MAX. CASE PRESSURE	[bar]	10	10	10	10	10	10	10	10
DRY WEIGHT	[kg]	35	35	35	35	35	35	35	35
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

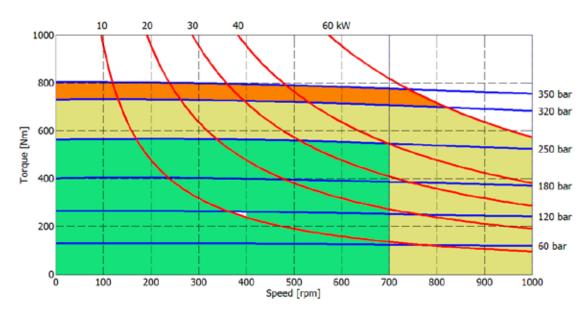
- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

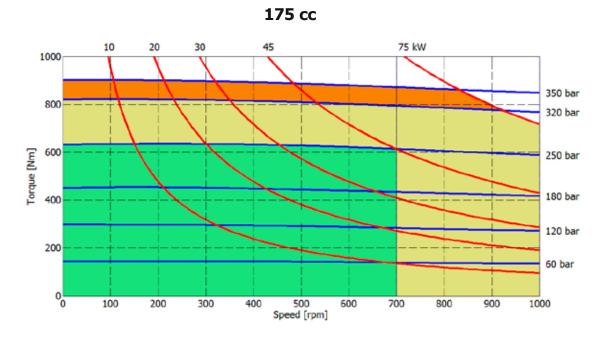

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

SHAFTS - HC1/C190

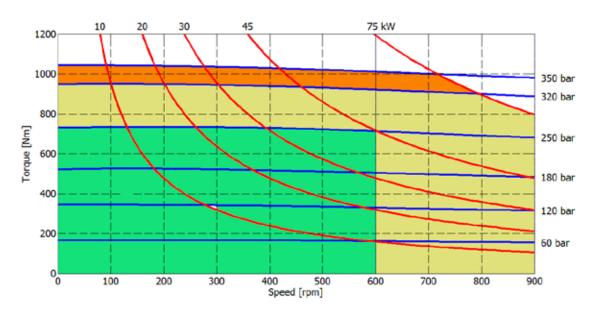


150 cc

Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

duty cycle, for 3 minutes maximum period Peak operation: permitted for very short


periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

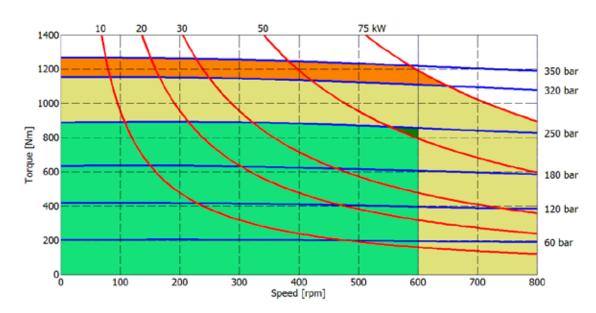
200 cc

Continuous operation

Continuous operation with flushing or intermittent operation (see below for intermittent operation)

Intermittent operation: permitted for a 15% of duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

periods (3-5 seconds every 10-15 minutes)

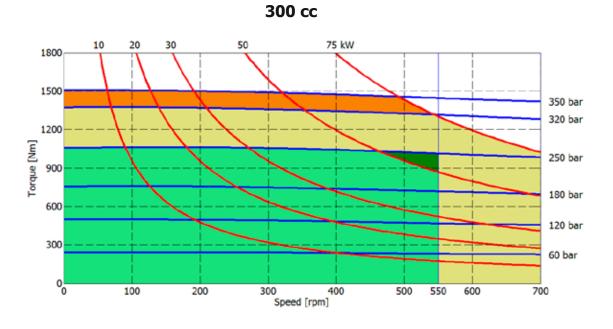

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

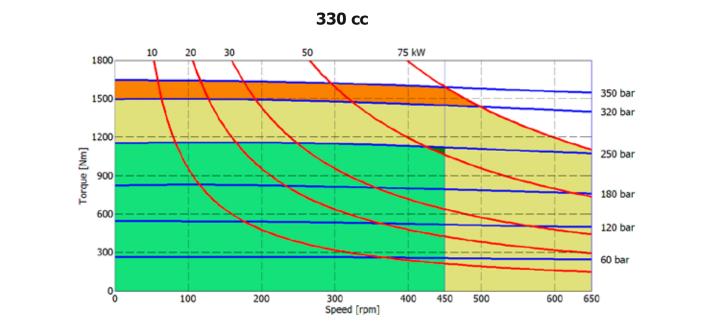
10 75 kW 20 30 48 1200 350 bar 1000 320 bar 800 250 bar Torque [Nm] 600 180 bar 400 120 bar 200 60 bar 0 100 200 300 500 400 600 700 800 Speed [rpm]

220 cc

250 сс

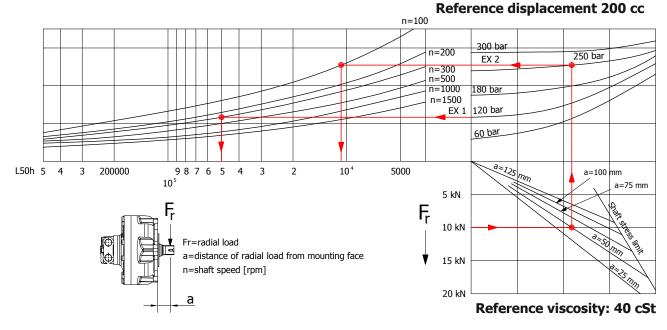
Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of


duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

periods (3-5 seconds every 10-15 minutes)

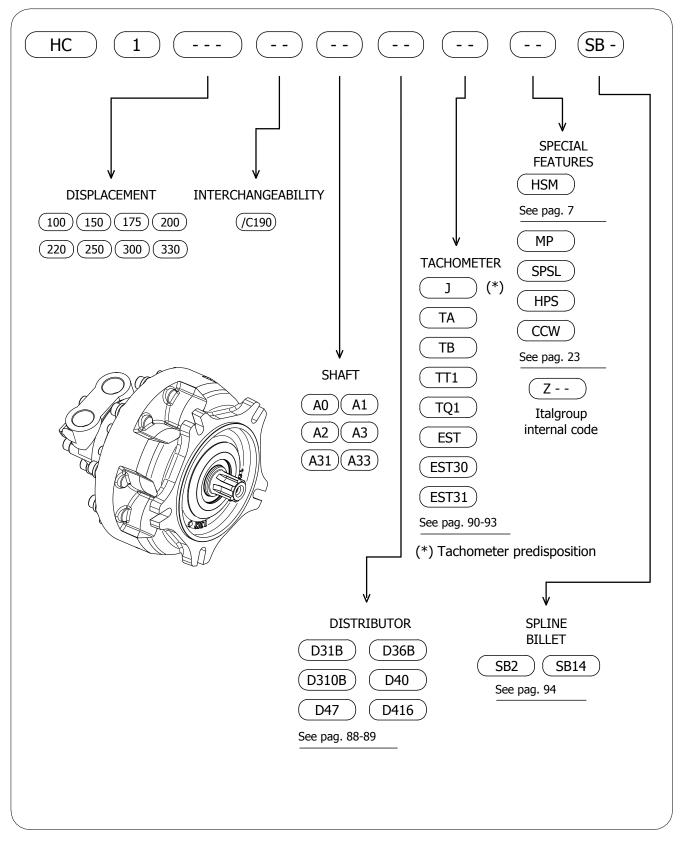
The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.


Continuous operation

Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

duty cycle, for 3 minutes maximum period Peak operation: permitted for very short periods (3-5 seconds every 10-15 minutes) The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

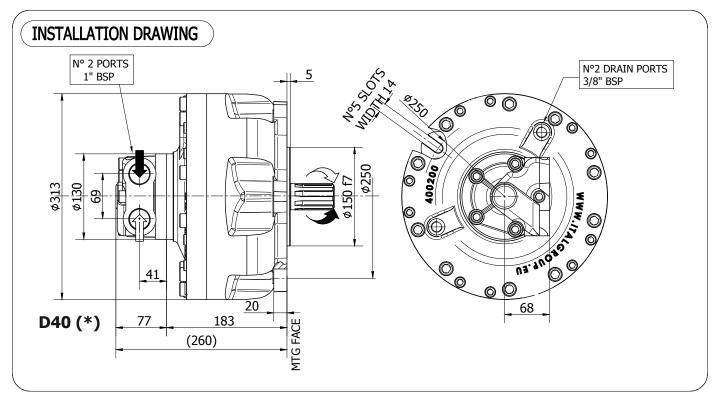
BEARING LIFE



Example:

We suppose (EX1): p=120 [bar], n=300 [rpm]; we obtain an average lifetime of 50000 [h]. If we suppose (EX2): $F_r=10$ [kN], a=50 [mm], n=100 [rpm] and p=250 [bar] we obtain an average lifetime of 10500 [h].

HC1- ORDERING CODE



ITALGROUP SRL HC SERIES - HC2 GENERAL CATALOGUE INDEX - HC2

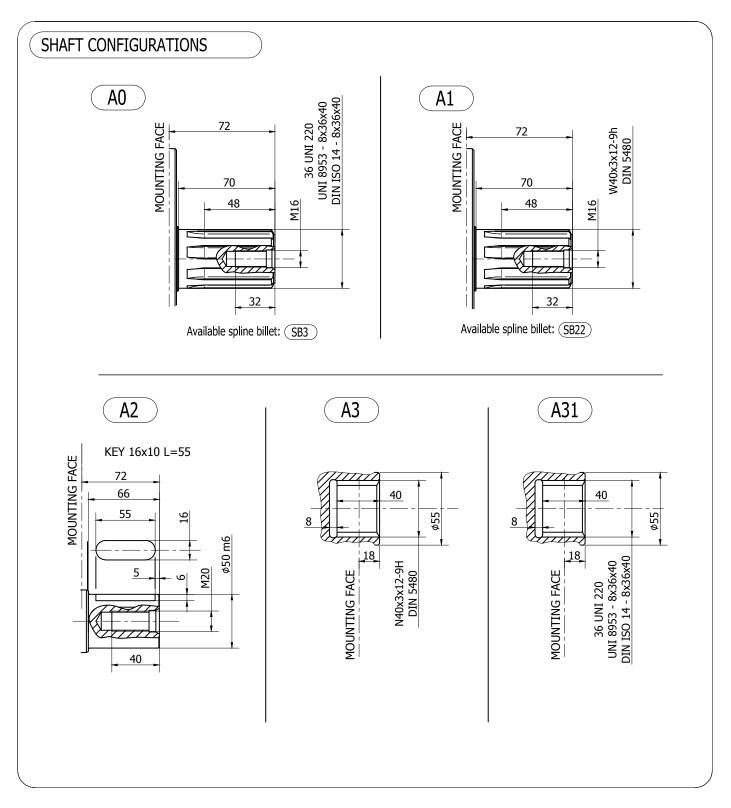
HC2 - INSTALLATION DRAWING	Pag	50 - 51
HC2/C300 - INSTALLATION DRAWING	"	52 - 53
HC2/S2 - INSTALLATION DRAWING	w	54 - 55
HC2 - PERFORMANCE DIAGRAMS	"	56 - 60
ORDERING CODE	w	61

HC2

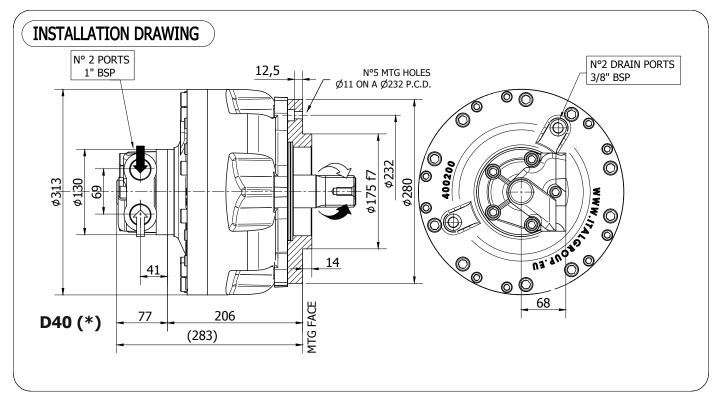
TECHNICAL DATA

		200	250	300	350	400	500	600	650
DISPLACEMENT	[cc]	193	251	305	348	424	493	566	624
SPECIFIC TORQUE	[Nm/bar]	3,06	4,00	4,84	5,52	6,76	7,84	9,00	9,92
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	1200	950	800	650	600	520	480	440
PEAK SPEED (***)	[rpm]	1500	1150	950	800	800	700	650	620
MAX. CONT. POWER (****)	[kW]	75	75	75	75	75	75	75	75
MAX. CONT. POWER WITH FLUSHING	[kW]	105	105	105	105	105	105	105	105
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	53	53	53	53	53	53	53	53
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

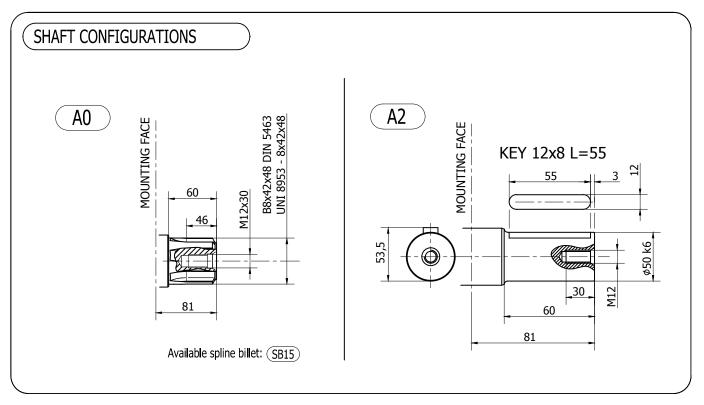

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

SHAFTS - HC2

TECHNICAL DATA

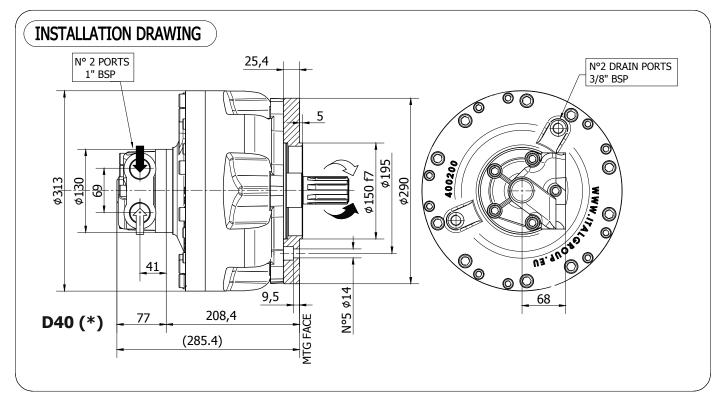
		200	250	300	350	400	500	600	650
DISPLACEMENT	[cc]	193	251	305	348	424	493	566	624
SPECIFIC TORQUE	[Nm/bar]	3,06	4,00	4,84	5,52	6,76	7,84	9,00	9,92
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	1200	950	800	650	600	520	480	440
PEAK SPEED (***)	[rpm]	1500	1150	950	800	800	700	650	620
MAX. CONT. POWER (****)	[kW]	75	75	75	75	75	75	75	75
MAX. CONT. POWER WITH FLUSHING	[kW]	105	105	105	105	105	105	105	105
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	53	53	53	53	53	53	53	53
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

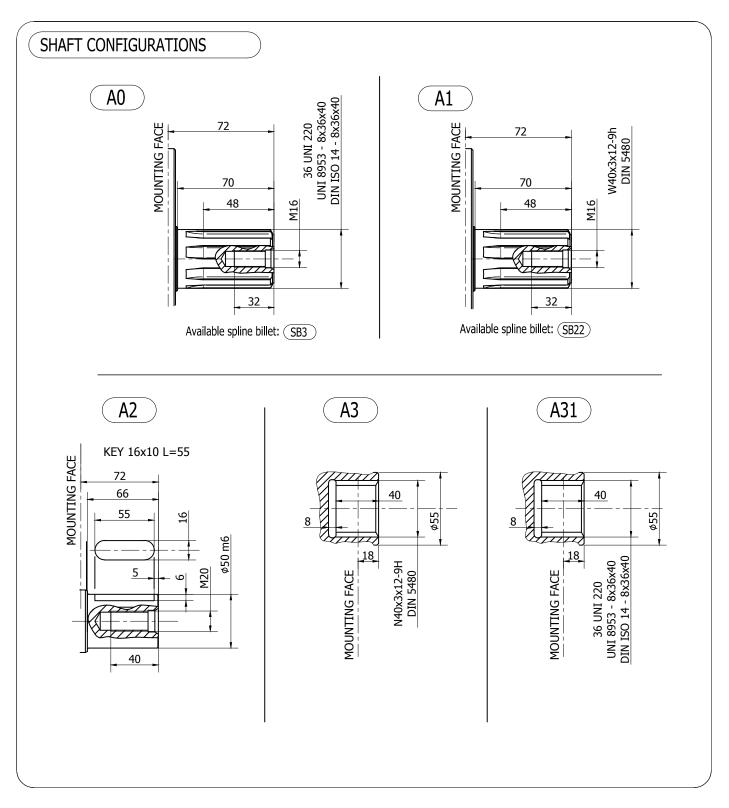

SHAFTS - HC2 / C300

HC2 / S2

TECHNICAL DATA

		200	250	300	350	400	500	600	650
DISPLACEMENT	[cc]	193	251	305	348	424	493	566	624
SPECIFIC TORQUE	[Nm/bar]	3,06	4,00	4,84	5,52	6,76	7,84	9,00	9,92
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	1200	950	800	650	600	520	480	440
PEAK SPEED (***)	[rpm]	1500	1150	950	800	800	700	650	620
MAX. CONT. POWER (****)	[kW]	75	75	75	75	75	75	75	75
MAX. CONT. POWER WITH FLUSHING	[kW]	105	105	105	105	105	105	105	105
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	53	53	53	53	53	53	53	53
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

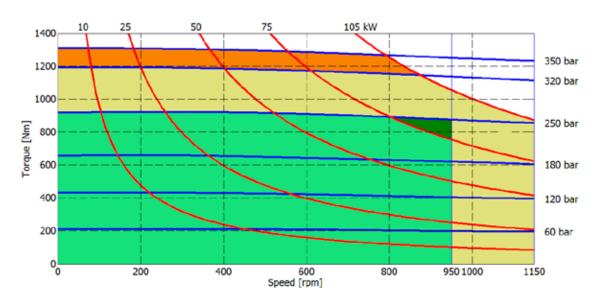
- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

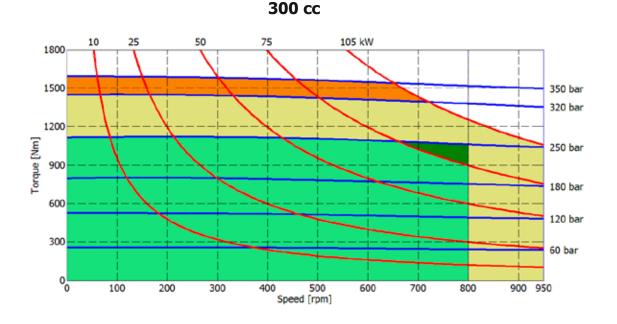
SHAFTS - HC2 / S2

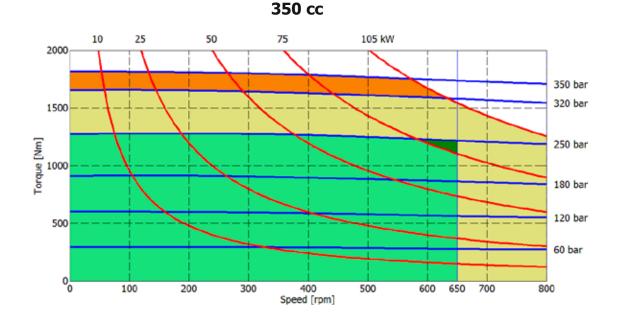


105 kW 25 10 50 75 1200 1000 350 bar 320 bar 800 Torque [Nm] 250 bar 600 180 bar 400 120 bar 200 60 bar 0 200 400 600 800 1000 1200 1400 1500 Speed [rpm]

200 cc

250 сс




Continuous operation

Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of duty cycle, for 3 minutes maximum period

Peak operation: permitted for very short periods (3-5 seconds every 10-15 minutes) The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

Continuous operation

Continuous operation with flushing or intermittent operation (see below for intermittent operation)

Intermittent operation: permitted for a 15% of duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

periods (3-5 seconds every 10-15 minutes)

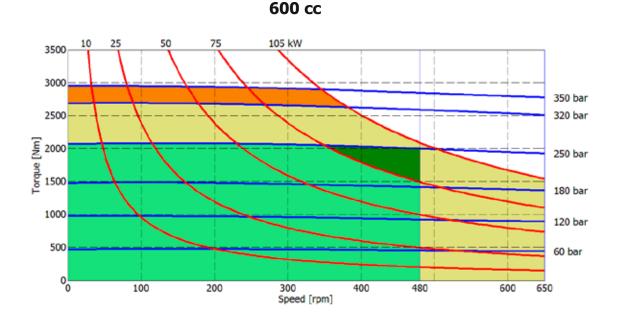
The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

25 50 75 105 kW 10 2500 350 bar 2000 320 bar [mN] anbro 1000 250 bar 180 bar 120 bar 500 60 bar 0 100 200 300 400 500 600 700 800 Speed [rpm]

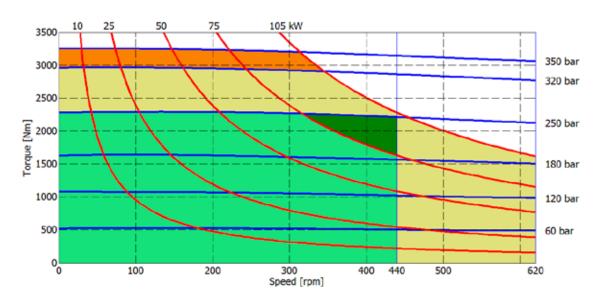
400 cc

500 cc

Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation)

Intermittent operation: permitted for a 15% of duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

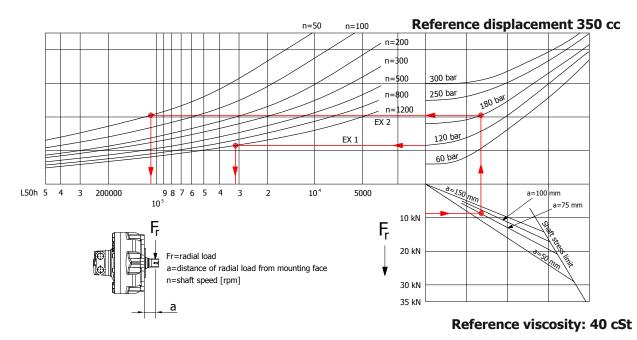

periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

650 сс

Continuous operation

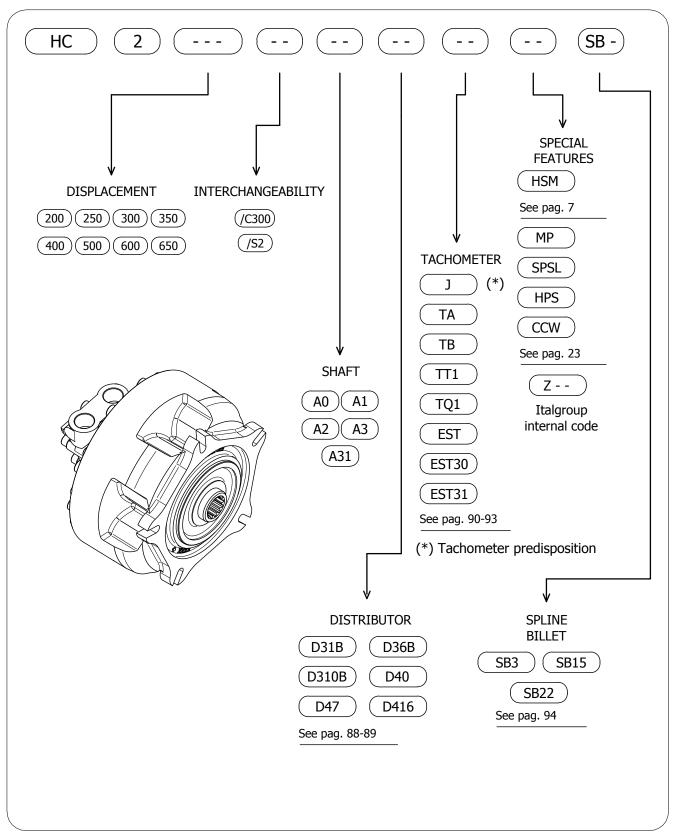
Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of


duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

BEARING LIFE



Example:

We suppose (EX1): p=120 [bar], n=1200 [rpm]; we obtain an average lifetime of 31000 [h]. If we suppose (EX2): $F_r=9$ [kN], a=75 [mm], n=50 [rpm] and p=180 [bar] we obtain an average lifetime of 105000 [h].

HC2- ORDERING CODE

ITALGROUP SRL HC SERIES - HC3 GENERAL CATALOGUE INDEX - HC3

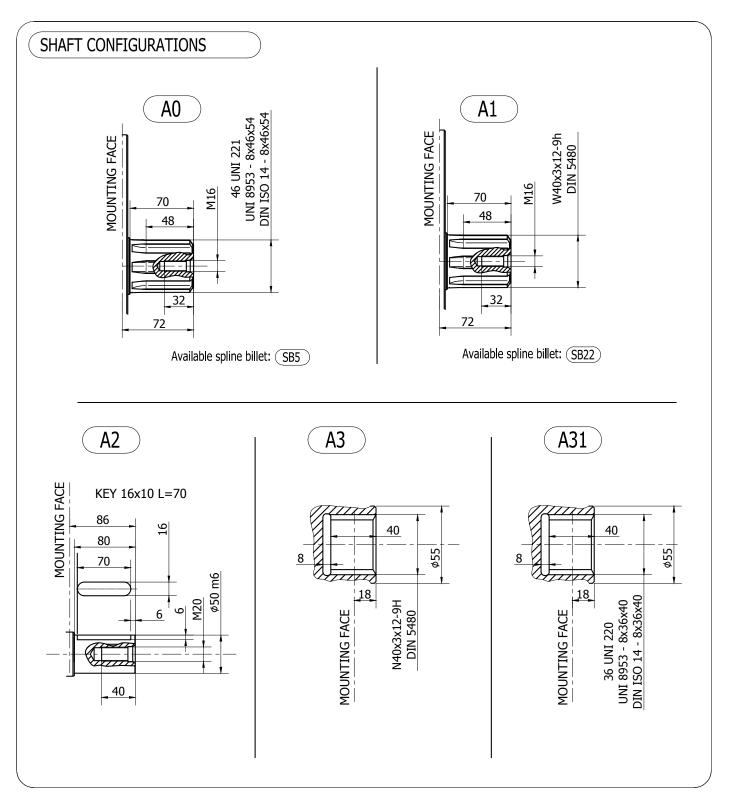
HC3 - INSTALLATION DRAWING	Pag	64 - 65
HC3/G2 - INSTALLATION DRAWING		66 - 67
HC3/G4 - INSTALLATION DRAWING	w	68 - 69
HC3 - PERFORMANCE DIAGRAMS	"	70 - 74
HC3 - ORDERING CODE	"	75

HC3

TECHNICAL DATA

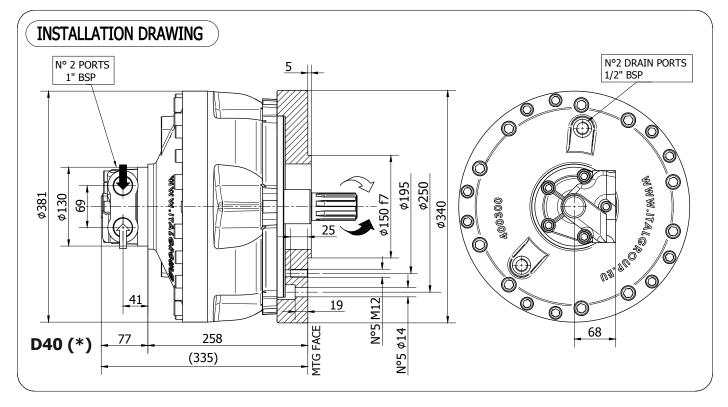
		350	400	500	600	700	800	900	1000
DISPLACEMENT	[cc]	352	426	486	595	689	792	872	988
SPECIFIC TORQUE	[Nm/bar]	5,60	6,78	7,73	9,47	11	12,6	13,9	15,7
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	640	600	500	450	420	400	360	310
PEAK SPEED (***)	[rpm]	800	800	700	600	600	550	525	500
MAX. CONT. POWER (****)	[kW]	82	85	85	85	85	85	85	85
MAX. CONT. POWER WITH FLUSHING	[kW]	130	130	130	130	130	130	130	130
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	92	92	92	92	92	92	92	92
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

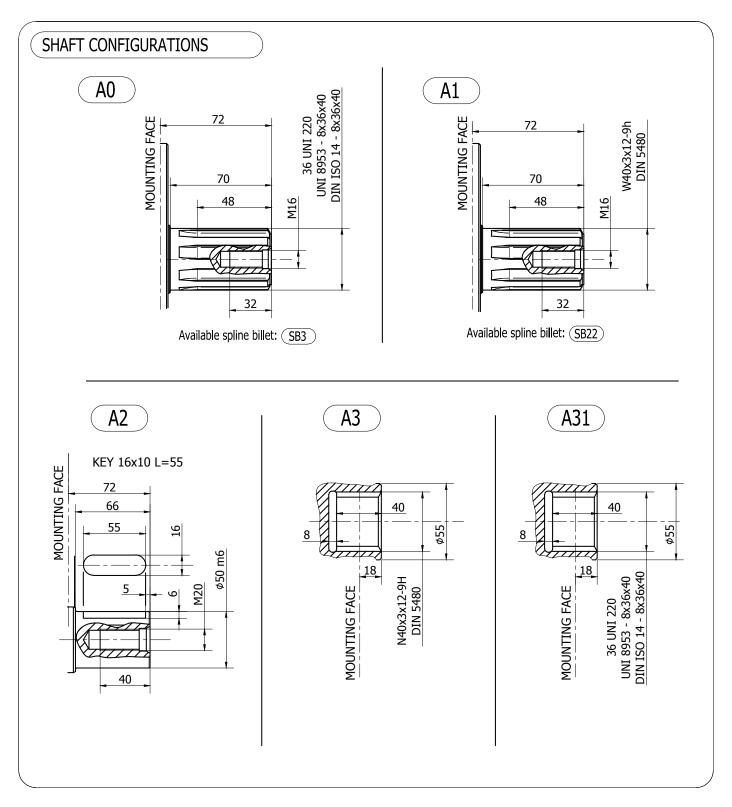

SHAFTS - HC3

HC3 / G2

TECHNICAL DATA

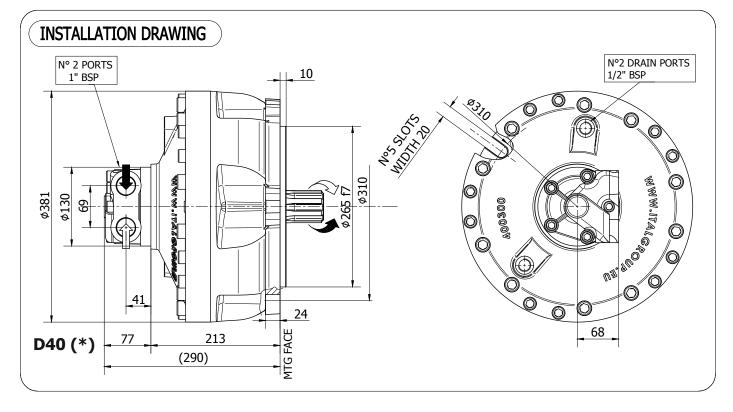
		350	400	500	600	700	800	900	1000
DISPLACEMENT	[cc]	352	426	486	595	689	792	872	988
SPECIFIC TORQUE	[Nm/bar]	5,60	6,78	7,73	9,47	11	12,6	13,9	15,7
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	640	600	500	450	420	400	360	310
PEAK SPEED (***)	[rpm]	800	800	700	600	600	550	525	500
MAX. CONT. POWER (****)	[kW]	85	85	85	85	85	85	85	85
MAX. CONT. POWER WITH FLUSHING	[kW]	130	130	130	130	130	130	130	130
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	92	92	92	92	92	92	92	92
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

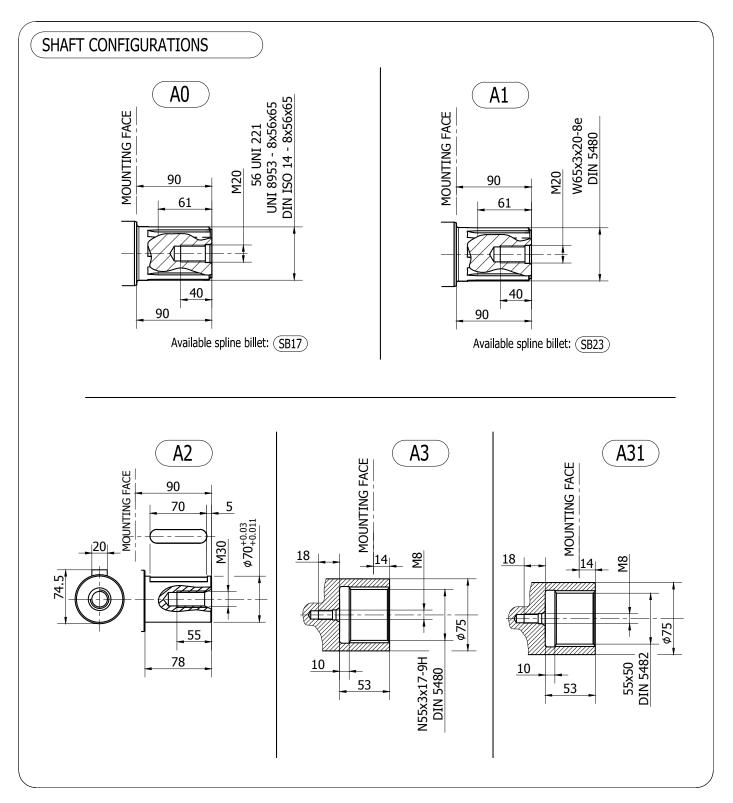

SHAFTS - HC3 / G2

HC3 / G4

TECHNICAL DATA

		350	400	500	600	700	800	900	1000
DISPLACEMENT	[cc]	352	426	486	595	689	792	872	988
SPECIFIC TORQUE	[Nm/bar]	5,60	6,78	7,73	9,47	11	12,6	13,9	15,7
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	640	600	500	450	420	400	360	310
PEAK SPEED (***)	[rpm]	800	800	700	600	600	550	525	500
MAX. CONT. POWER (****)	[kW]	85	85	85	85	85	85	85	85
MAX. CONT. POWER WITH FLUSHING	[kW]	130	130	130	130	130	130	130	130
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	92	92	92	92	92	92	92	92
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

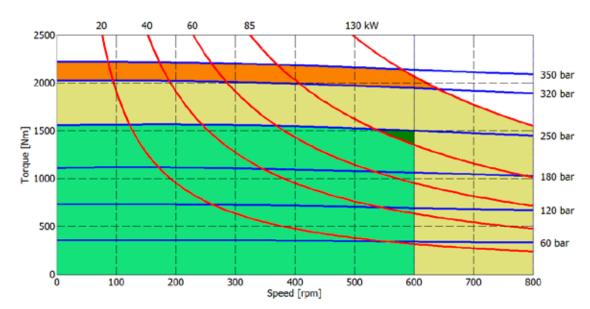
- (*) The standard distributor (D40) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

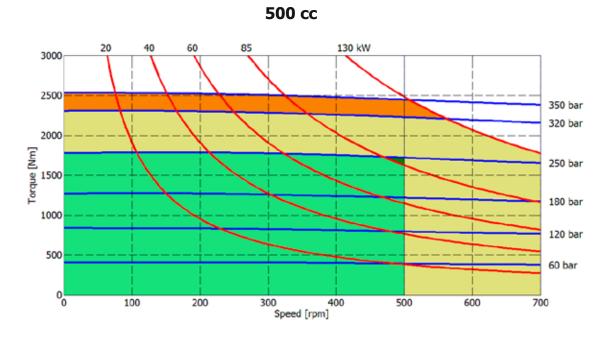
SHAFTS - HC3 / G4



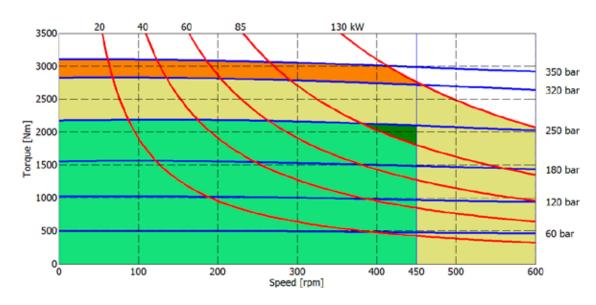
350 cc 20 40 60 82 130 kW 2000 350 bar 320 bar 1500 250 bar Torque [Nm] 1000 180 bar 120 bar 500 60 bar 0 100 200 300 400 500 600 640 700 800 Speed [rpm]

400 cc

Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

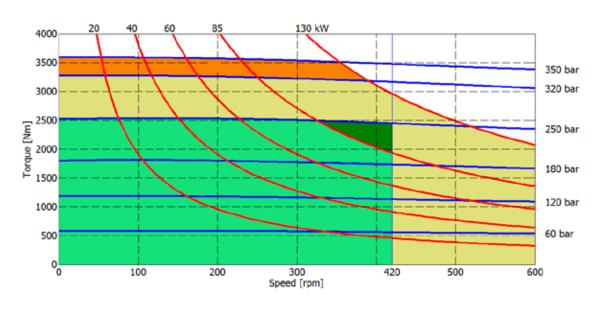

periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

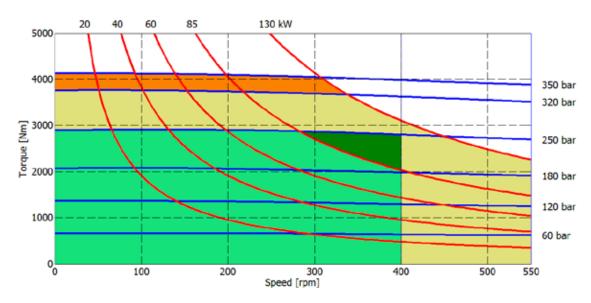
600 cc

Continuous operation

Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of


duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

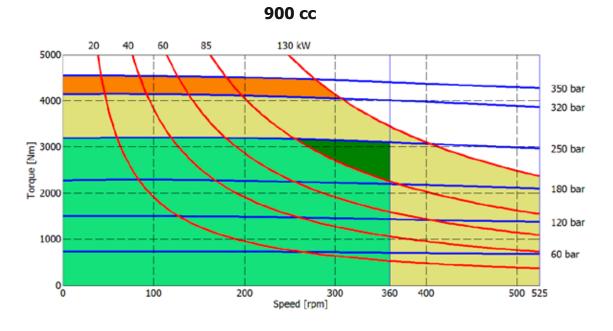
periods (3-5 seconds every 10-15 minutes)

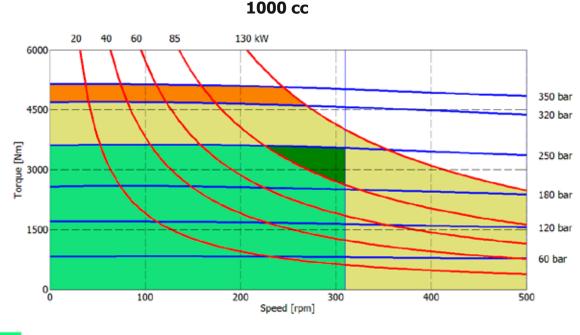

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

700 сс

800 cc

Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

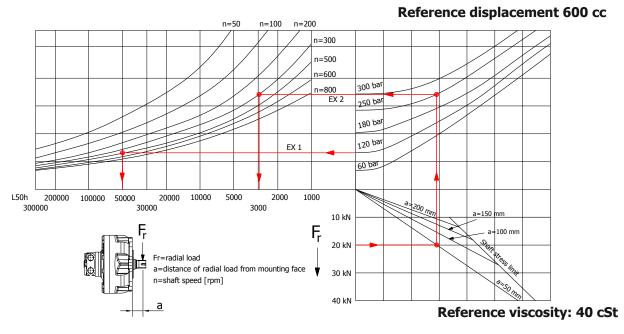

duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

Continuous operation

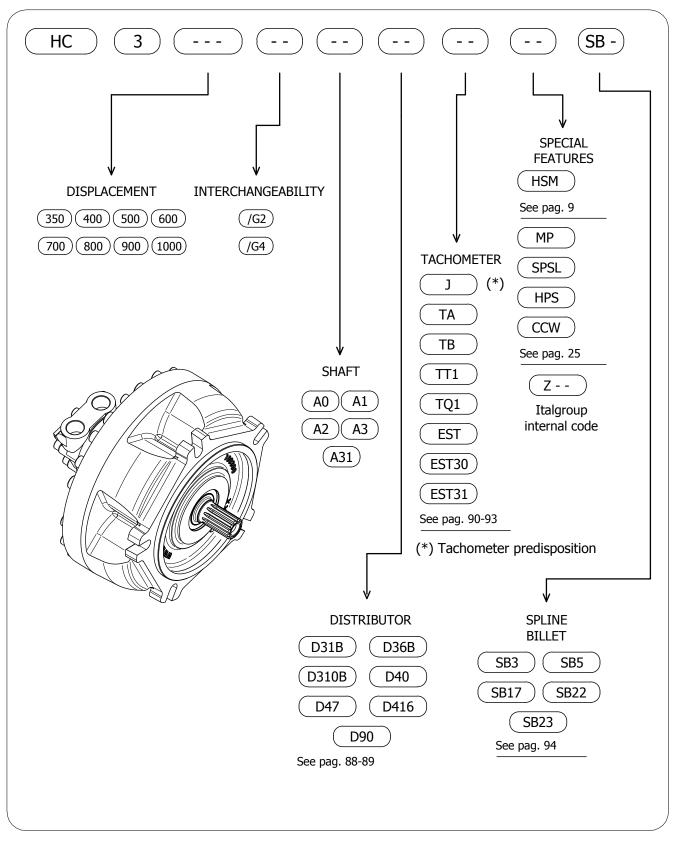
Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of


duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

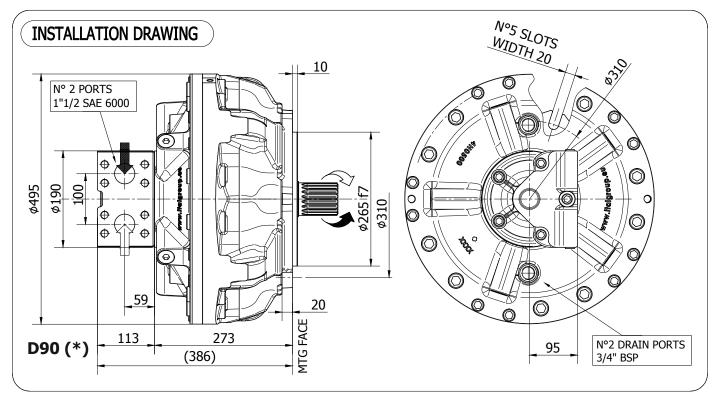
BEARING LIFE



Example:

We suppose (EX1): p=120 [bar], n=500 [rpm]; we obtain an average lifetime of 50000 [h]. If we suppose (EX2): $F_r=20$ [kN], a=50 [mm], n=300 [rpm] and p=250 [bar] we obtain an average lifetime of 2900 [h].

HC3- ORDERING CODE



ITALGROUP SRL HC SERIES - HC5 GENERAL CATALOGUE INDEX - HC5

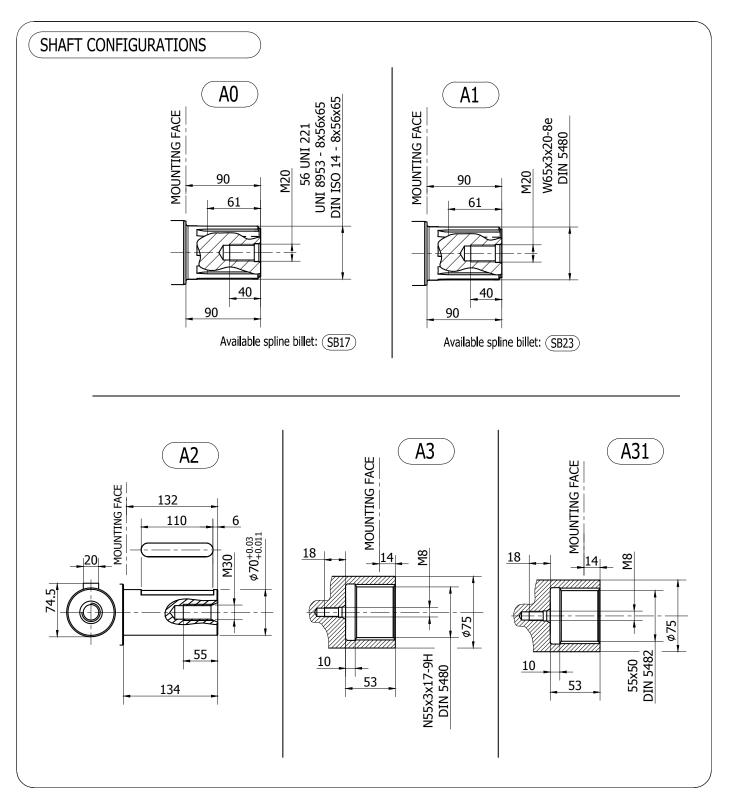
HC5 - INSTALLATION DRAWING	Pag	78 - 79
HC5 / G4 - INSTALLATION DRAWING	w	80 - 81
HC5 - PERFORMANCE DIAGRAMS	w	82 - 86
ORDERING CODE	"	87

HC5

TECHNICAL DATA

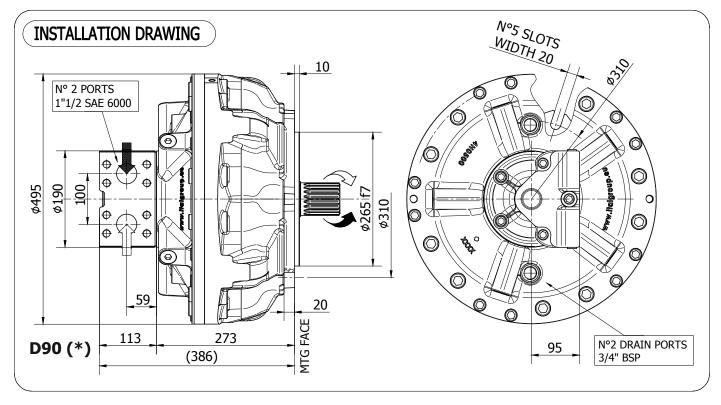
		800	1000	1200	1300	1500	1600	1800	2000
DISPLACEMENT	[cc]	837	1060	1200	1308	1462	1625	1816	2010
SPECIFIC TORQUE	[Nm/bar]	13,3	16,9	19,1	20,8	23,3	25,9	28,3	31,3
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	350	320	320	320	300	280	280	220
PEAK SPEED (***)	[rpm]	470	470	430	430	380	350	350	280
MAX. CONT. POWER (****)	[kW]	100	100	100	100	100	100	100	100
MAX. CONT. POWER WITH FLUSHING	[kW]	150	150	150	150	150	150	150	150
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	190	190	190	190	190	190	190	190
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

- (*) The standard distributor (D90) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

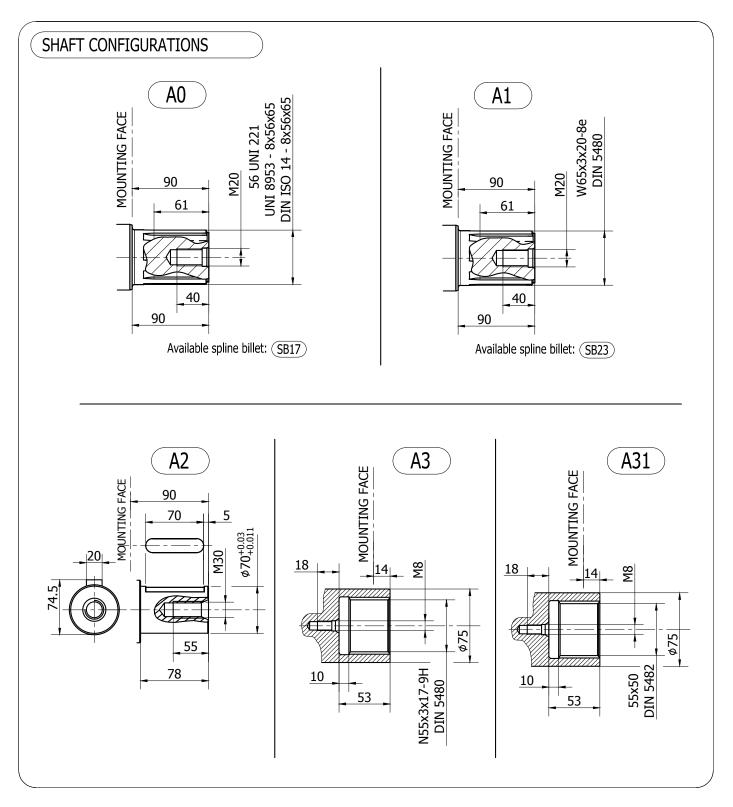

SHAFTS - HC5

HC5 / G4

TECHNICAL DATA

		800	1000	1200	1300	1500	1600	1800	2000
DISPLACEMENT	[cc]	837	1060	1200	1308	1462	1625	1816	2010
SPECIFIC TORQUE	[Nm/bar]	13,3	16,9	19,1	20,8	23,3	25,9	28,3	31,3
MAX. CONT. PRESSURE	[bar]	250	250	250	250	250	250	250	250
HYDROSTATIC TEST PRESSURE	[bar]	420	420	420	420	420	420	420	420
MAX. CONT. SPEED	[rpm]	350	320	320	320	300	280	280	220
PEAK SPEED (***)	[rpm]	470	470	430	430	380	350	350	280
MAX. CONT. POWER (****)	[kW]	100	100	100	100	100	100	100	100
MAX. CONT. POWER WITH FLUSHING	[kW]	150	150	150	150	150	150	150	150
MAX. CASE PRESSURE	[bar]	6	6	6	6	6	6	6	6
DRY WEIGHT	[kg]	190	190	190	190	190	190	190	190
TEMPERATURE RANGE (**)	[°C]	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70	-30÷70

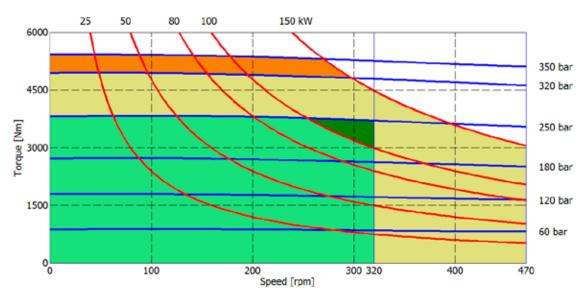
- (*) The standard distributor (D90) is shown. Please refer to distributors section (pag. 82-83) for differents distributor interfaces.


- (**) Please refer to the hydraulic fluid recommendations (pag. 8-9).

- (***) Do not exceed maximum continuous power with flushing (pag. 11).

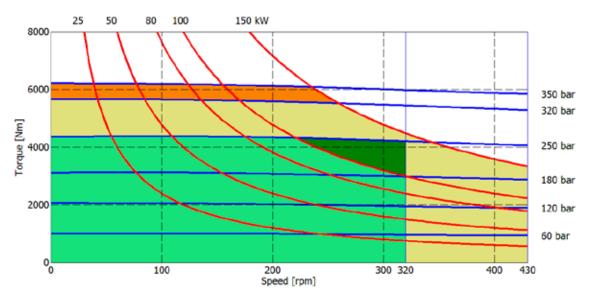
- (****) For motor operation with a continuous duty cycle at maximum continuous power the flushing is usually required. For more information please contact our technical department.

SHAFTS - HC5 / G4

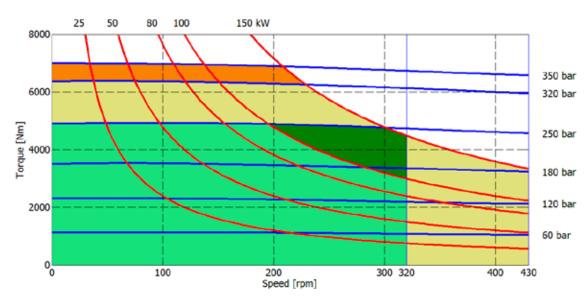


800 cc 150 kW 25 50 80 100 5000 4000 350 bar 320 bar Torque [Nm] 3000 2000 250 bar 180 bar 120 bar 1000 60 bar 0 100 200 300 350 400 470 Speed [rpm]

Continuous operation


Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of duty cycle, for 3 minutes maximum period

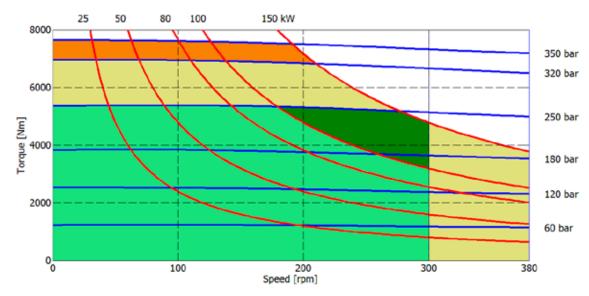
Peak operation: permitted for very short periods (3-5 seconds every 10-15 minutes)


The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

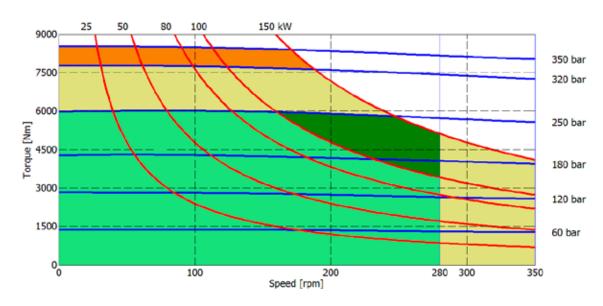
1300 сс

Continuous operation

Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of

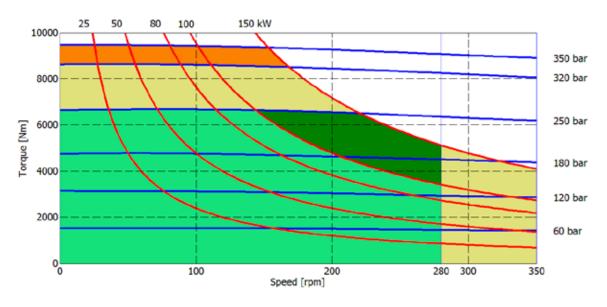

duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

periods (3-5 seconds every 10-15 minutes)

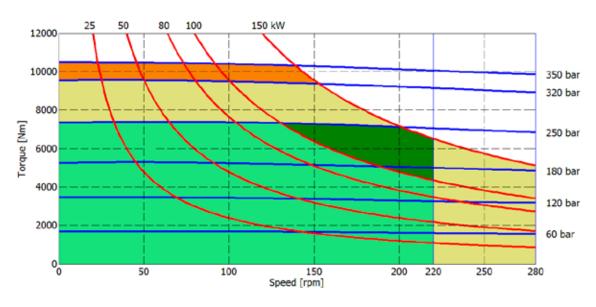

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

1500 сс

1600 cc


Continuous operation

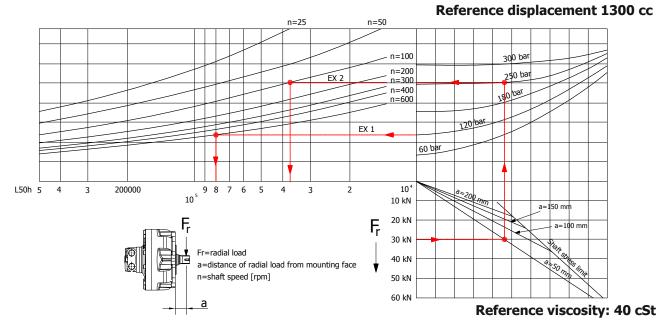
Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of


duty cycle, for 3 minutes maximum period Peak operation: permitted for very short periods (3-5 seconds every 10-15 minutes) The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

2000 сс

Continuous operation

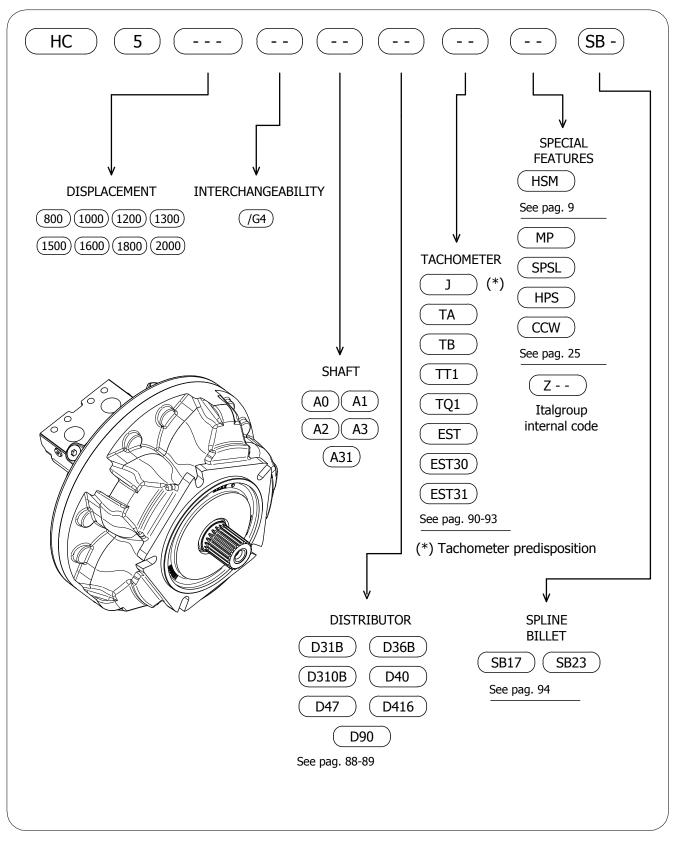
Continuous operation with flushing or intermittent operation (see below for intermittent operation) Intermittent operation: permitted for a 15% of


duty cycle, for 3 minutes maximum period Peak operation: permitted for very short

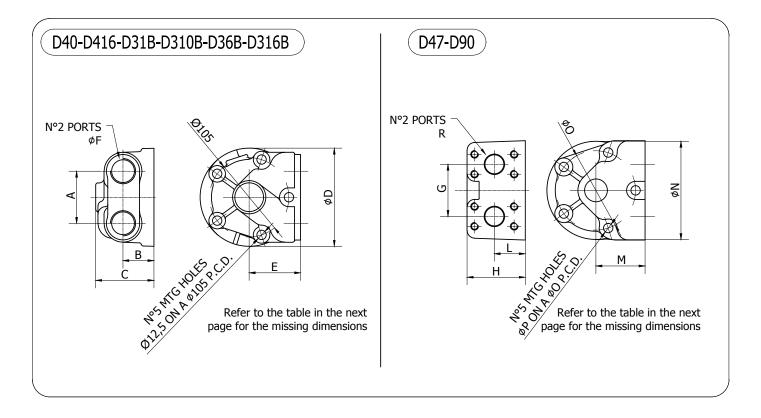
periods (3-5 seconds every 10-15 minutes)

The above diagrams are referring to the hydraulic motor working with a fluid in ideal conditions (viscosity at 40 cSt). In case the working temperature increases and viscosity reach values under the recommended values (see hydraulic fluid recommendations) flushing must be performed or ISO oil grade must be changed. The working temperature must not overcome 70 °C.

BEARING LIFE



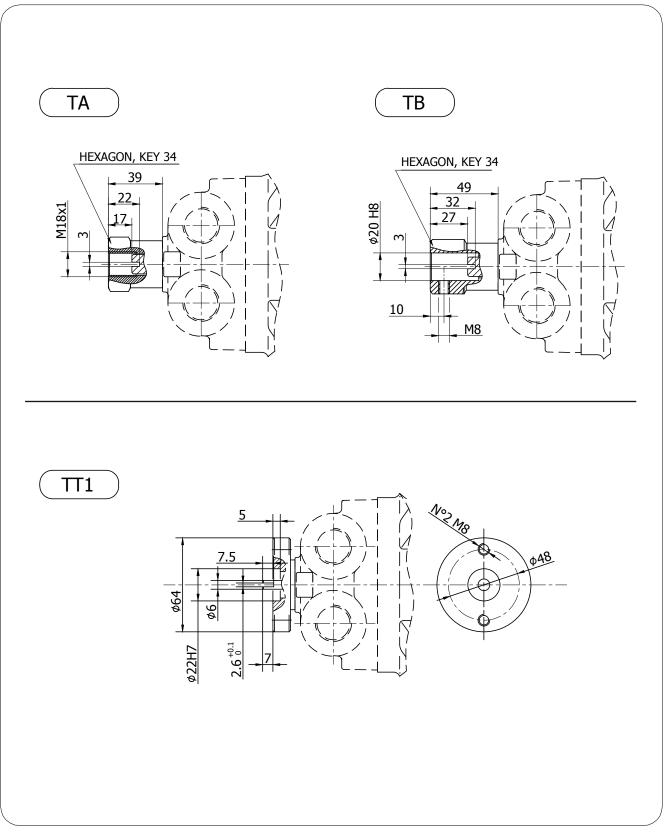
Example:


We suppose (EX1): p=120 [bar], n=600 [rpm]; we obtain an average lifetime of 80000 [h]. If we suppose (EX2): $F_r=30$ [kN], a=50 [mm], n=100 [rpm] and p=250 [bar] we obtain an average lifetime of 38000 [h].

HC5 - ORDERING CODE

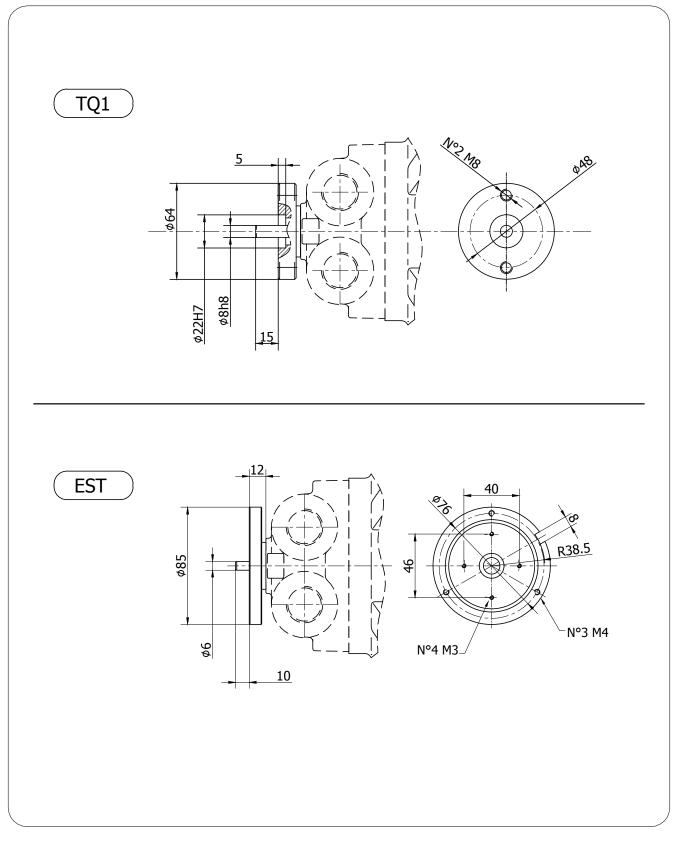
MOTOR DISTRIBUTORS

		D40	D416	D31B	D310B	D36B	D316B	D47	D90
А	[mm]	69	69	56	56	56	56		
В	[mm]	41	41	32	32	32	32		
С	[mm]	77	77	60	60	60	60		
D	[mm]	130	130	125	125	125	125		
E	[mm]	68	68	65	65	65	65		
F	[]	1″ BSP	1″ SAE	3/4" BSP	1" BSP	3/4″ SAE	1" SAE		
G	[mm]							69	100
Н	[mm]							77	113
L	[mm]							41	59
М	[mm]							65	95
Ν	[mm]							130	190
0	[mm]							105	149
Р	[mm]							12,5	14,5
R	[]							1″ SAE 3000	1″1/2 SAE 6000


		D31B	D310B	D36B	D316B	D40	D416	D47	D90
MAX. CONT. FLOW	[l/min]	200	300	200	300	300	300	300	700
MAX. FLOW	[l/min]	400	400	400	400	400	400	400	1200
MAX. CONT. PRESSURE	[bar]	300	300	300	300	300	300	300	300
PEAK PRESSURE	[bar]	500	500	500	500	500	500	500	500
HC05		•	•	•	•	•	•	•	
HC1		•	•	•	•	•	•	•	
HC2			•		٠		٠	•	
HC3		•	•	•	•	•	•	•	Θ
HC5		Θ	•						
HC5		Θ							

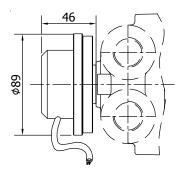
Standard version

Special version: available on request. Please contact Italgroup for more details

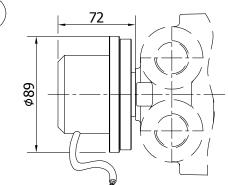


TACHOMETERS - TA - TB - TT1

TACHOMETERS - TQ1 - EST

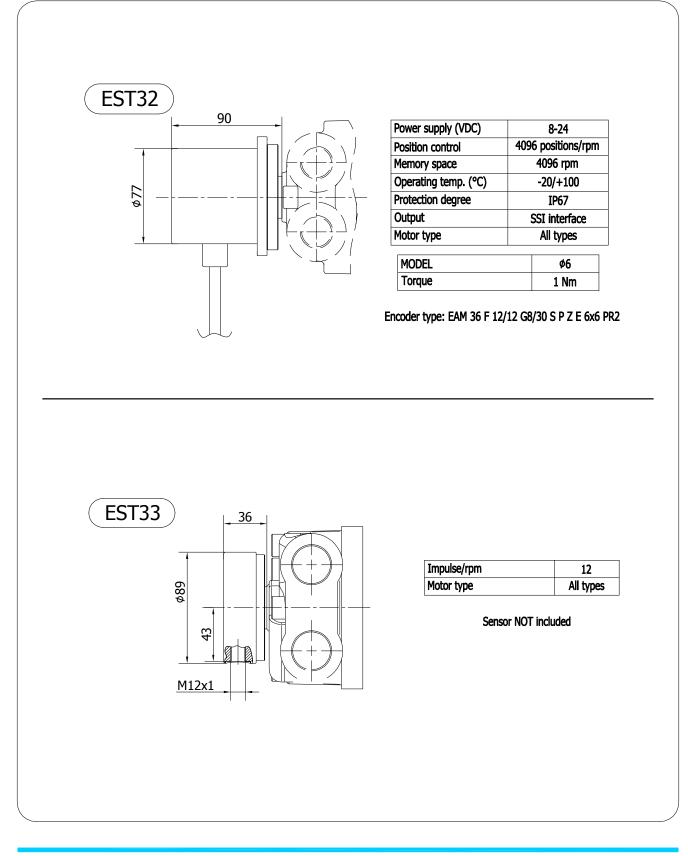



TACHOMETERS - EST30 - EST31

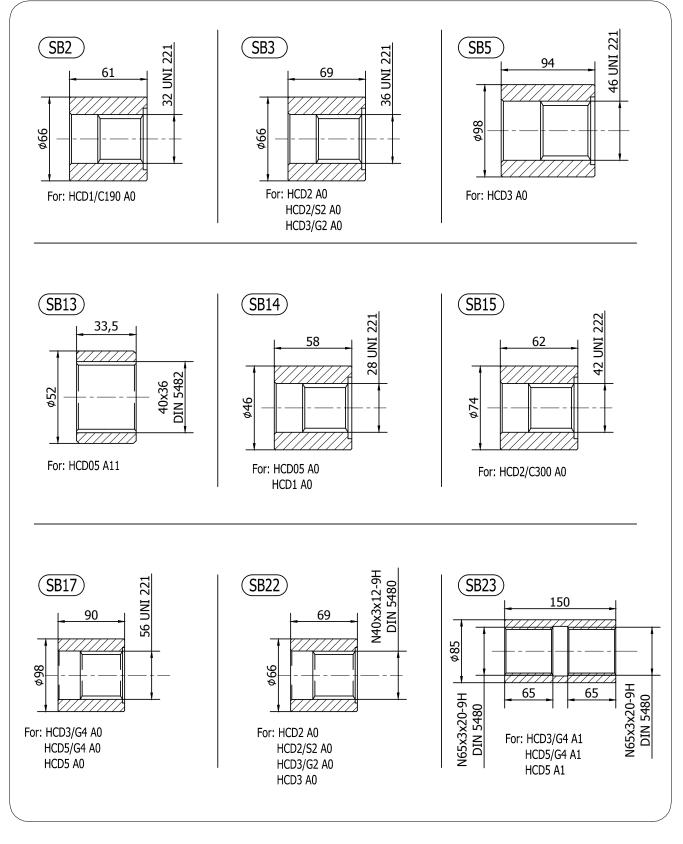


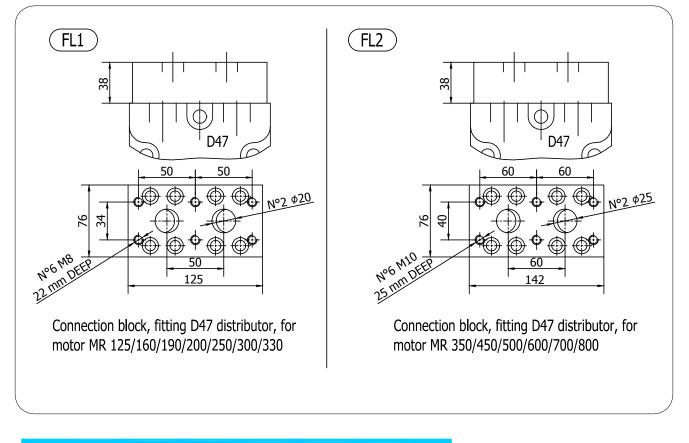
EST31

Operating parameters	E/3
Power supply (VDC)	10-30
Switching current (mA)	150
Frequency (Hz) 100rpm	50
Impulse/rpm	30
Operating temp. (°C)	-24/+70
Protection degree	IP67
Output	NPN
Motor type	All types
MODEL	Ø5
Torque	1 Nm

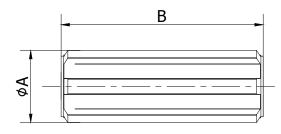


Power supply (VDC)	8-24
Impulse/rpm	500
Operating temp. (°C)	0/+60
Protection degree	IP65
Output	Push-pull
Motor type	All types
MODEL	Ø5
Torque	1 Nm


TACHOMETERS - EST32 - EST33



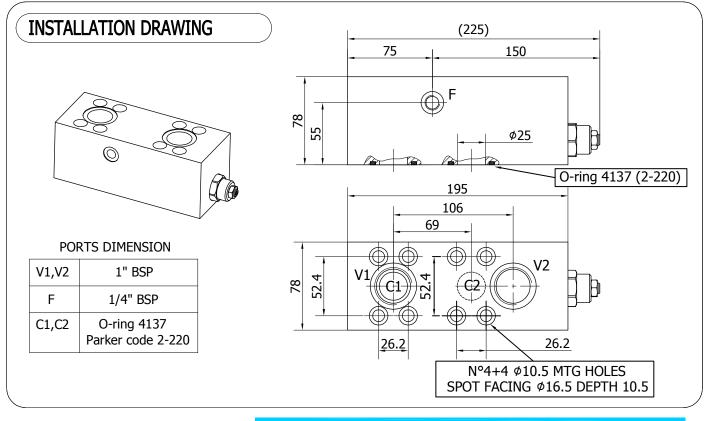
SPLINED BILLETS



ADAPTOR FLANGES

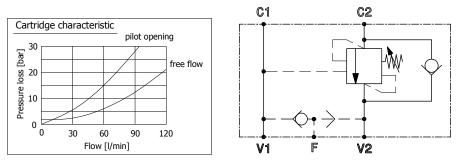
SPLINED BARS

	Α	В
B8075	W35x2x16-8e DIN 5480	100
B8076	W40x3x12-8e DIN 5480	100
B8077	28 UNI 221	100
B8078	36 UNI 220	100

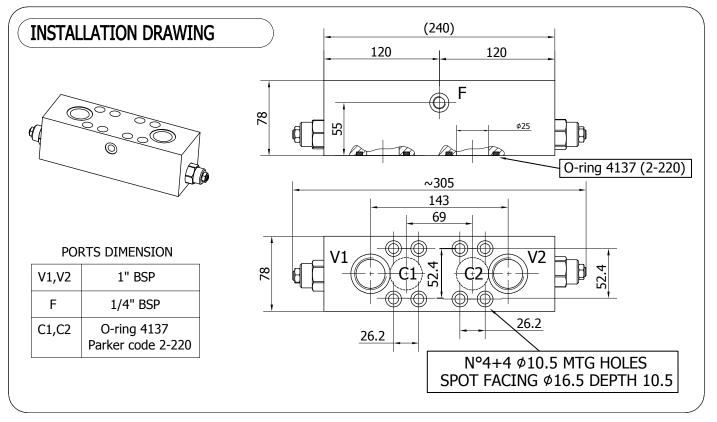


ITALGROUP MOTORS HC SERIES - VALVES TECHNICAL CATALOGUE INDEX - VALVES

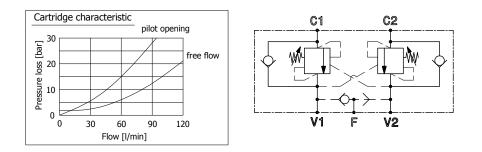
SINGLE OVERCENTER - OVSA 160	. Pag.	98
DOUBLE OVERCENTER - OVDA 160		99
FLUSHING - AP 40	"	100
DOUBLE RELIEF - RVDA 80	"	101
DOUBLE RELIEF AND FLUSHING - RVDAP 80		101
SINGLE RELIEF AND ANTICAVITATION - RVSAC 200		
	. "	103
DOUBLE OVERCENTER - OVDA 300		104
DOUBLE RELIEF - RVDA 200		105
DOUBLE OVERCENTER - OVDA 480	"	106
DOUBLE RELIEF - RVDA 380	"	107
DOUBLE RELIEF AND FLUSHING - RVDAP 90	•	
	. "	108
VALVES ORDERING CODE		109

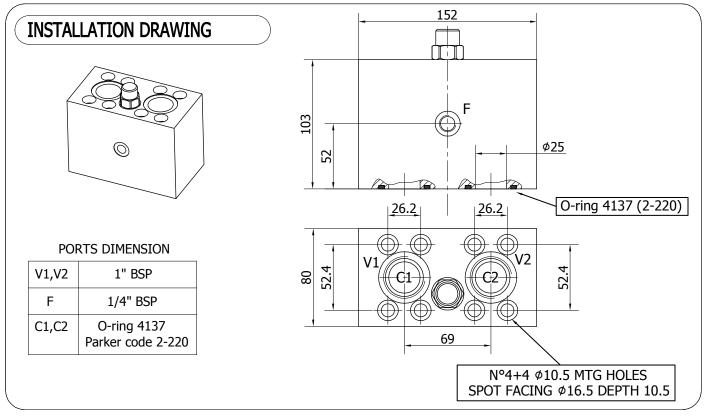

SINGLE OVERCENTER VALVE - OVSA 160

TECHNICAL DATA - OVSA 160

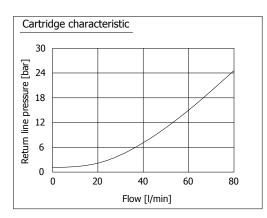

		OVSA.160.1.A.D47	OVSA.160.2.C.D47	OVSA.160.3.C.D47
NOMINAL FLOW	[l/min]	120	120	120
MAXIMUM FLOW	[l/min]	160	160	160
MAXIMUM PRESSURE	[bar]	350	350	350
PILOT RATIO	[]	3:1	4.5:1	10:1
RELIEF VALVE SETTING RANGE	[bar]	70-280	140-350	140-350
STANDARD RELIEF SETTING	[bar]	210	210	210
BLOCK MATERIAL	[]	steel	steel	steel
DISTRIBUTOR FITTING	[]	D47	D47	D47

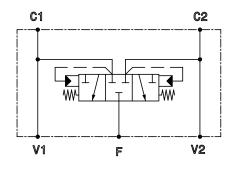
- (*) Standard version. Usually ready on stock.


DOUBLE OVERCENTER VALVE - OVDA 160

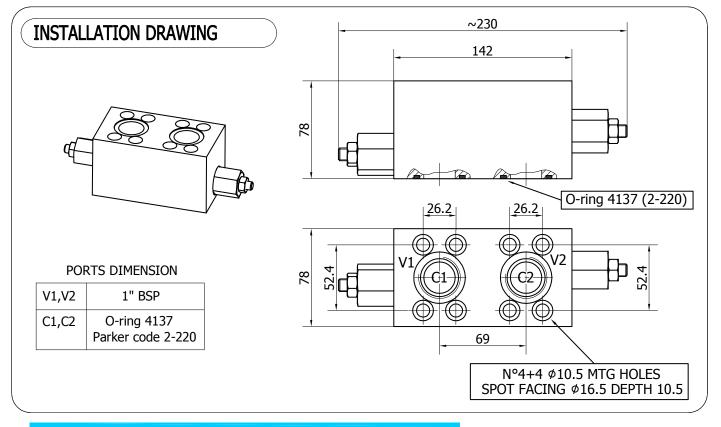

TECHNICAL DATA - OVDA 160

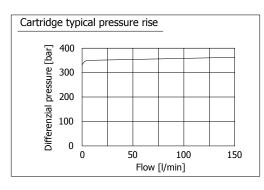
		OVDA.160.1.A.D47	OVDA.160.2.C.D47	OVDA.160.3.C.D47
NOMINAL FLOW	[l/min]	120	120	120
MAXIMUM FLOW	[l/min]	160	160	160
MAXIMUM PRESSURE	[bar]	350	350	350
PILOT RATIO	[]	3:1	4.5:1	10:1
RELIEF VALVE SETTING RANGE	[bar]	70-280	140-350	140-350
STANDARD RELIEF SETTING	[bar]	210	210	210
BLOCK MATERIAL	[]	steel	steel	steel
DISTRIBUTOR FITTING	[]	D47	D47	D47

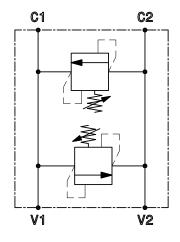



FLUSHING VALVE - AP40

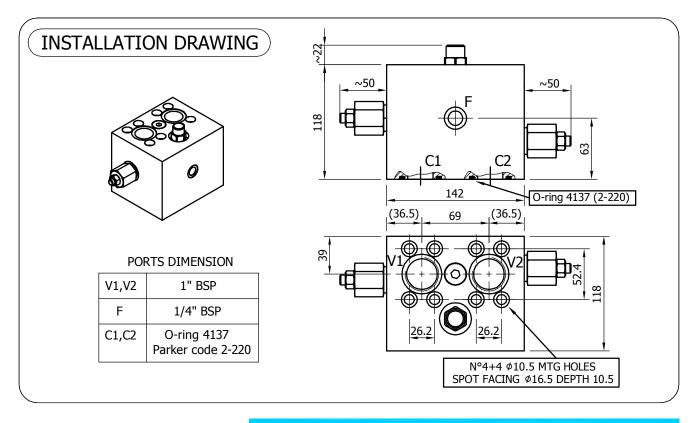
TECHNICAL DATA - AP40

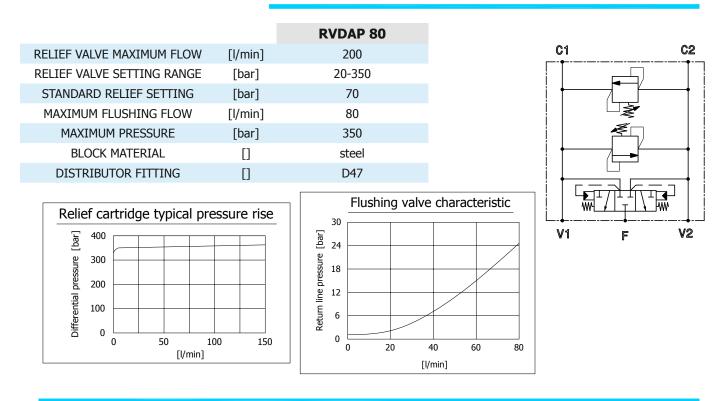

		AP40.D47
MAXIMUM FLUSHING FLOW	[l/min]	80
MAXIMUM PRESSURE	[bar]	350
BLOCK MATERIAL	[]	steel
DISTRIBUTOR FITTING	[]	D47


DOUBLE RELIEF VALVE- RVDA 80

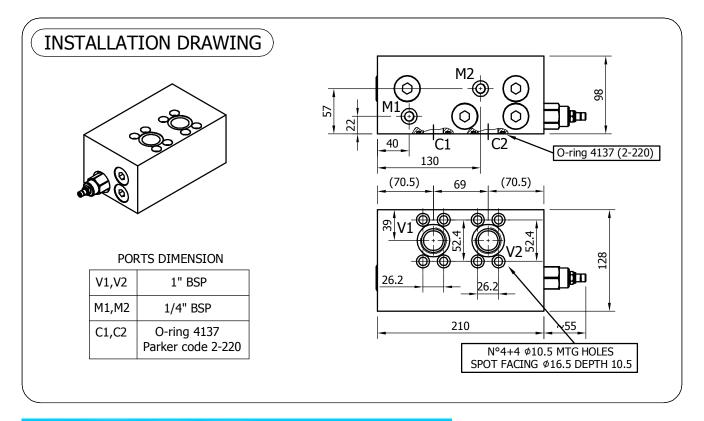


TECHNICAL DATA - RVDA 80

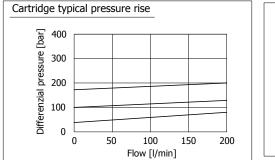

		RVDA.80.C.D47
NOMINAL FLOW	[l/min]	150
MAXIMUM FLOW	[l/min]	200
MAXIMUM PRESSURE	[bar]	350
RELIEF VALVE SETTING RANGE	[bar]	20-350
STANDARD RELIEF SETTING	[bar]	20
BLOCK MATERIAL	[]	steel
DISTRIBUTOR FITTING	[]	D47

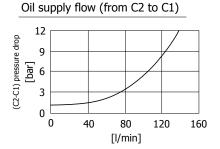


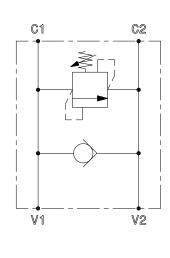
DOUBLE RELIEF WITH FLUSHING - RVDAP80



TECHNICAL DATA - RVDAP 80


SINGLE RELIEF / ANTICAVITATION- RVSAC200

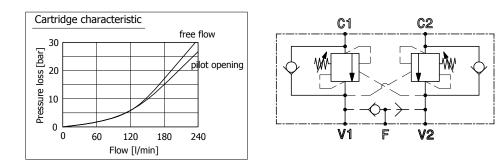




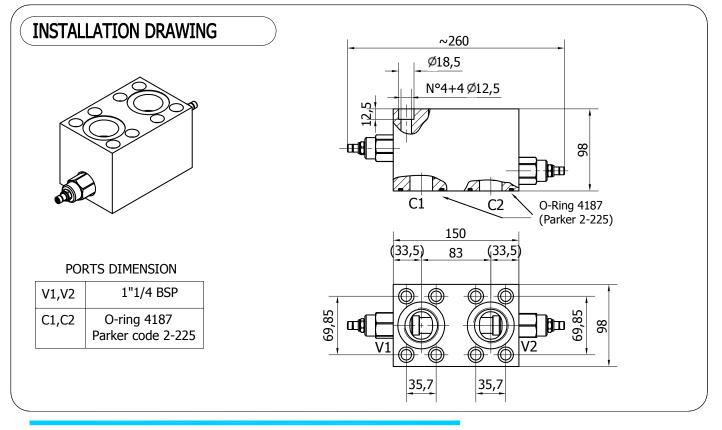
TECHNICAL DATA - RVSAC 200

		RVSAC200
RELIEF VALVE MAXIMUM FLOW	[l/min]	200
MAXIMUM PRESSURE	[bar]	350
RELIEF VALVE SETTING RANGE	[bar]	70-420
STANDARD RELIEF SETTING	[bar]	70
CHECK VALVE MAXIMUM FLOW	[l/min]	160
BLOCK MATERIAL	[]	steel
DISTRIBUTOR FITTING	[]	D47

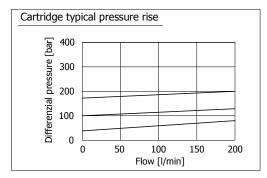


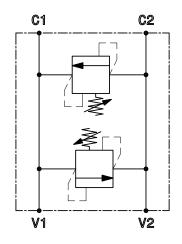


DOUBLE OVERCENTER VALVE - OVDA 300

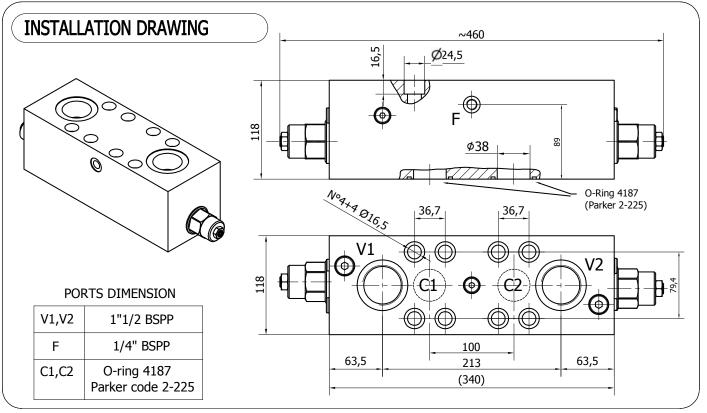

TECHNICAL DATA - OVDA 300

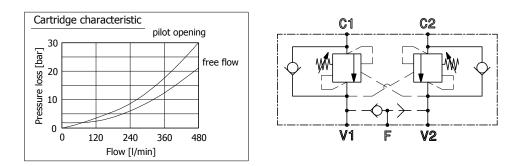
		OVDA.300.1.A.D75	OVDA.300.4.C.D75	OVDA.300.2.C.D75
NOMINAL FLOW	[l/min]	240	240	240
MAXIMUM FLOW	[l/min]	300	300	300
MAXIMUM PRESSURE	[bar]	350	350	350
PILOT RATIO	[]	3:1	10:1	4.5:1
RELIEF VALVE SETTING RANGE	[bar]	70-280	140-350	140-350
STANDARD RELIEF SETTING	[bar]	210	210	210
BLOCK MATERIAL	[]	steel	steel	steel
DISTRIBUTOR FITTING	[]	D75	D75	D75


DOUBLE RELIEF VALVE- RVDA 200

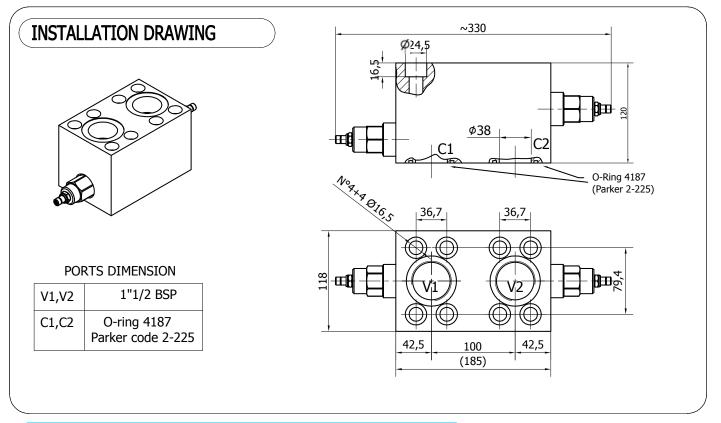


TECHNICAL DATA - RVDA 200

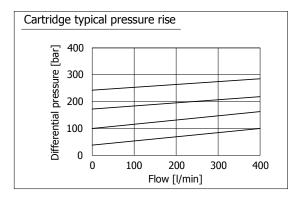

		RVDA.200.C.D75
RELIEF VALVE MAXIMUM FLOW	[l/min]	200
MAXIMUM PRESSURE	[bar]	350
RELIEF VALVE SETTING RANGE	[bar]	70-420
STANDARD RELIEF SETTING	[bar]	70
BLOCK MATERIAL	[]	steel
DISTRIBUTOR FITTING	[]	D75

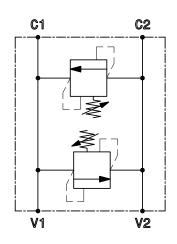


DOUBLE OVERCENTER VALVE - OVDA 480

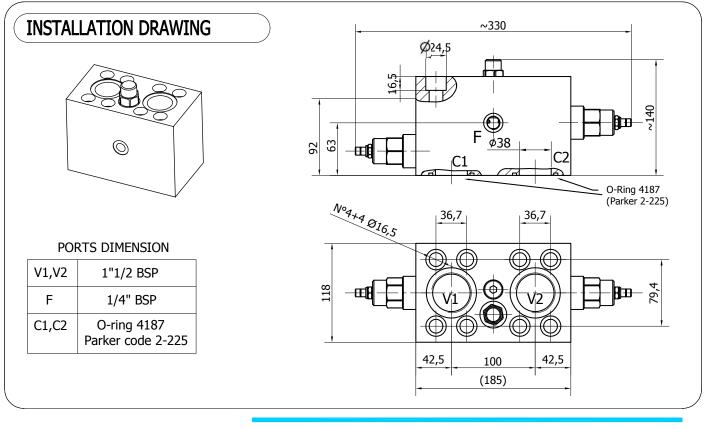

TECHNICAL DATA - OVDA 480

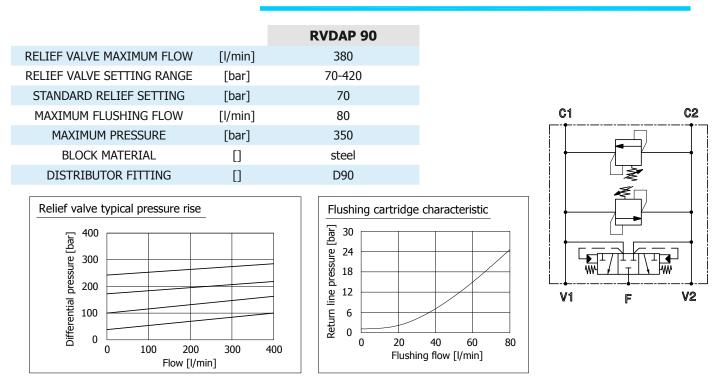
		OVDA.480.1.A.D90	OVDA.480.4.C.D90	OVDA.480.2.C.D90
NOMINAL FLOW	[l/min]	480	480	480
MAXIMUM FLOW	[l/min]	600	600	600
MAXIMUM PRESSURE	[bar]	350	350	350
PILOT RATIO	[]	3:1	10:1	4.5:1
RELIEF VALVE SETTING RANGE	[bar]	70-280	140-350	140-350
STANDARD RELIEF SETTING	[bar]	210	210	210
BLOCK MATERIAL	[]	steel	steel	steel
DISTRIBUTOR FITTING	[]	D90	D90	D90


DOUBLE RELIEF VALVE- RVDA 380

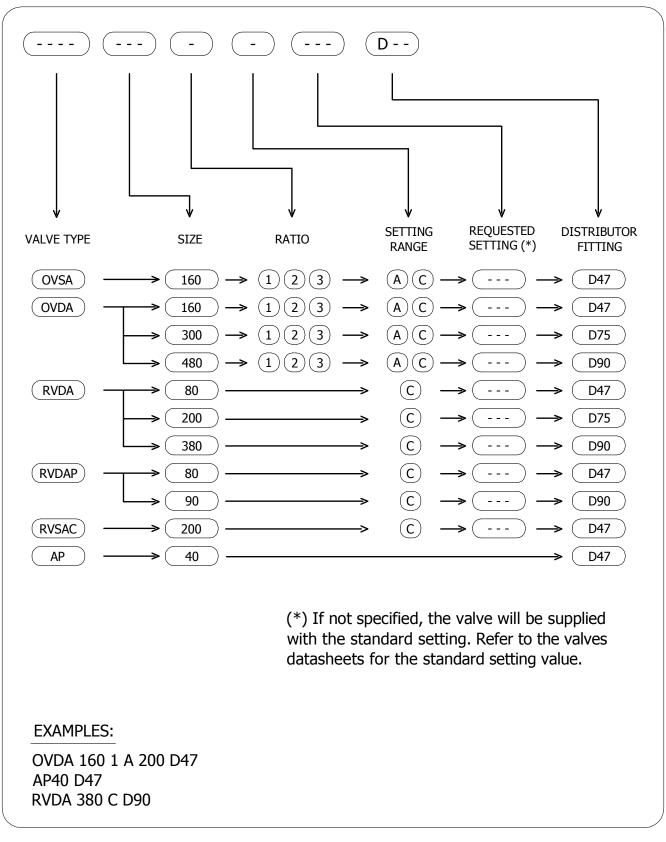


TECHNICAL DATA - RVDA 380


		RVDA.380.C.D90
RELIEF VALVE MAXIMUM FLOW	[l/min]	380
MAXIMUM PRESSURE	[bar]	350
RELIEF VALVE SETTING RANGE	[bar]	70-420
STANDARD RELIEF SETTING	[bar]	70
BLOCK MATERIAL	[]	steel
DISTRIBUTOR FITTING	[]	D90



DOUBLE RELIEF WITH FLUSHING - RVDAP 90



TECHNICAL DATA - RVDAP 90

VALVES ORDERING CODE

The data specified into the catalogue are for product description purpose only and must not be interpreted as warranted characteristics in legal sense. Italgroup S.r.l. reserves the right to implement modifications without notice. All partial or total reproduction and copy without written authorization of Italgroup S.r.l. is strictly forbidden.

CONTACT US

Italgroup S.r.I. Via Pacinotti 20/22 41010 - Gaggio di Piano (Modena) – Italy

Tel.	+39 059 92 42 57
Fax	+39 059 92 01 13
e-mail:	italgroup@italgroup.eu
internet:	<u>http://www.italgroup.e</u> u

Austria		Egypt
Belgium		South Africa
Croatia		Tunisia
Czech Republic		
Cyprus		
Denmark	America	
Faroe Islands		Argentina
France		Brazil
Finland		Canada
Germany		Chile
Greece		Mexico
Iceland		Peru
Italy		USA
Netherland		Colombia
Norway		
Poland		
Portugal	Asia	
Russia		China
Slovenia		Hong Kong
Spain		India
Sweden		Indonesia
Switzerland		Iran
Turkey		Israel
Ukraina		Philippines
United Kingdom		Russia
		Belarus
		Singapore
		South Korea
		Thailand
		Taiwan
		United Arab Emirates

Europe

Oceania

Australia New Zeland

Vietnam

Italgroup S.r.I. - Via Pacinotti 20/22 - 41013 Gaggio di Piano - CASTELFRANCO EMILIA (MODENA) - Italy - Tel. +39.059.924257 - Fax +39.059.920113 www.italgroup.eu - italgroup@italgroup.eu